Skip to main content Accessibility help
×
Home

Measurement of the angle, temperature and flux of fast electrons emitted from intense laser–solid interactions

  • D. R. Rusby (a1) (a2), L. A. Wilson (a1), R. J. Gray (a2), R. J. Dance (a2), N. M. H. Butler (a2), D. A. MacLellan (a2), G. G. Scott (a1), V. Bagnoud (a3), B. Zielbauer (a3), P. McKenna (a2) and D. Neely (a1) (a2)...

Abstract

High-intensity laser–solid interactions generate relativistic electrons, as well as high-energy (multi-MeV) ions and x-rays. The directionality, spectra and total number of electrons that escape a target-foil is dependent on the absorption, transport and rear-side sheath conditions. Measuring the electrons escaping the target will aid in improving our understanding of these absorption processes and the rear-surface sheath fields that retard the escaping electrons and accelerate ions via the target normal sheath acceleration (TNSA) mechanism. A comprehensive Geant4 study was performed to help analyse measurements made with a wrap-around diagnostic that surrounds the target and uses differential filtering with a FUJI-film image plate detector. The contribution of secondary sources such as x-rays and protons to the measured signal have been taken into account to aid in the retrieval of the electron signal. Angular and spectral data from a high-intensity laser–solid interaction are presented and accompanied by simulations. The total number of emitted electrons has been measured as $2.6\times 10^{13}$ with an estimated total energy of $12\pm 1~\text{J}$ from a $100~{\rm\mu}\text{m}$ Cu target with 140 J of incident laser energy during a $4\times 10^{20}~\text{W}~\text{cm}^{-2}$ interaction.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Measurement of the angle, temperature and flux of fast electrons emitted from intense laser–solid interactions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Measurement of the angle, temperature and flux of fast electrons emitted from intense laser–solid interactions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Measurement of the angle, temperature and flux of fast electrons emitted from intense laser–solid interactions
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: dean.rusby@stfc.ac.uk

References

Hide All
Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gómez Cadenas, J. J., González, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F. W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampén, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M. G., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J. P., Wenaus, T., Williams, D. C., Wright, D., Yamada, T., Yoshida, H. & Zschiesche, D. 2003 Geant4a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A 506 (3), 250303.
Bagnoud, V., Aurand, B., Blazevic, A., Borneis, S., Bruske, C., Ecker, B., Eisenbarth, U., Fils, J., Frank, A., Gaul, E., Goette, S., Haefner, C., Hahn, T., Harres, K., Heuck, H.-M., Hochhaus, D., Hoffmann, D. H. H., Javorkov, D., Kluge, H.-J., Kuehl, T., Kunzer, S., Kreutz, M., Merz-Mantwill, T., Neumayer, P., Onkels, E., Reemts, D., Rosmej, O., Roth, M., Stoehlker, T., Tauschwitz, A., Zielbauer, B., Zimmer, D. & Witte, K. 2010 Commissioning and early experiments of the phelix facility. Appl. Phys. B 100 (1), 137150.
Brunel, F. 1987 Not-so-resonant, resonant absorption. Phys. Rev. Lett. 59 (1), 5255.
Chen, C. D., Kemp, A. J., Perez, F., Link, A., Beg, F. N., Chawla, S., Key, M. H., McLean, H., Morace, A., Ping, Y., Sorokovikova, A., Stephens, R. B., Streeter, M., Westover, B. & Patel, P. K. 2013 Comparisons of angularly and spectrally resolved Bremsstrahlung measurements to two-dimensional multi-stage simulations of short-pulse laser–plasma interactions. Phys. Plasmas 20 (5), 052703.
Chen, C. D., Patel, P. K., Hey, D. S., Mackinnon, A. J., Key, M. H., Akli, K. U., Bartal, T., Beg, F. N., Chawla, S., Chen, H., Freeman, R. R., Higginson, D. P., Link, A., Ma, T. Y., MacPhee, A. G., Stephens, R. B., Van Woerkom, L. D., Westover, B. & Porkolab, M. 2009 Bremsstrahlung and K ${\it\alpha}$ fluorescence measurements for inferring conversion efficiencies into fast ignition relevant hot electrons. Phys. Plasmas 16 (8), 082705.
Courtois, C., Compant La Fontaine, A., Landoas, O., Lidove, G., Meot, V., Morel, P., Nuter, R., Lefebvre, E., Boscheron, A., Grenier, J., Aleonard, M. M., Gerbaux, M., Gobet, F., Hannachi, F., Malka, G., Scheurer, J. N. & Tarisien, M. 2009 Effect of plasma density scale length on the properties of bremsstrahlung x-ray sources created by picosecond laser pulses. Phys. Plasmas 16 (1), 013105.
Edwards, R. D., Sinclair, M. A., Goldsack, T. J., Krushelnick, K., Beg, F. N., Clark, E. L., Dangor, A. E., Najmudin, Z., Tatarakis, M., Walton, B., Zepf, M., Ledingham, K. W. D., Spencer, I., Norreys, P. A., Clarke, R. J., Kodama, R., Toyama, Y. & Tampo, M. 2002 Characterization of a Gamma-ray source based on a laser–plasma accelerator with applications to radiography. Appl. Phys. Lett. 80 (12), 21292131.
Fiorini, F., Neely, D., Clarke, R. J. & Green, S. 2014 Characterization of laser-driven electron and photon beams using the Monte Carlo code FLUKA. Laser Part. Beams 32 (02), 233241.
Gray, R. J., Yuan, X. H., Carroll, D. C., Brenner, C. M., Coury, M., Quinn, M. N., Tresca, O., Zielbauer, B., Aurand, B., Bagnoud, V., Fils, J., Kuhl, T., Lin, X. X., Li, C., Li, Y. T., Roth, M., Neely, D. & McKenna, P. 2011 Surface transport of energetic electrons in intense picosecond laser-foil interactions. Appl. Phys. Lett. 99 (17), 171502.
Hatchett, S. P., Brown, C. G., Cowan, T. E., Henry, E. A., Johnson, J. S., Key, M. H., Koch, J. A., Langdon, A., Bruce, L., Barbara, F., Lee, R. W., Mackinnon, A. J., Pennington, D. M., Perry, M. D., Phillips, T. W., Roth, M., Craig, Sangster, T., Singh, M. S., Snavely, R. A., Stoyer, M. A., Wilks, S. C. & Yasuike, K. 2000 Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets. Phys. Plasmas 7 (5), 20762082.
Link, A., Freeman, R. R., Schumacher, D. W. & Van Woerkom, L. D. 2011 Effects of target charging and ion emission on the energy spectrum of emitted electrons. Phys. Plasmas 18 (5), 053107.
MacLellan, D. A., Carroll, D. C., Gray, R. J., Booth, N., Burza, M., Desjarlais, M. P., Du, F., Gonzalez-Izquierdo, B., Neely, D., Powell, H. W., Robinson, A. P. L., Rusby, D. R., Scott, G. G., Yuan, X. H., Wahlström, C.-G. & McKenna, P. 2013 Annular fast electron transport in silicon arising from low-temperature resistivity. Phys. Rev. Lett. 111 (9), 095001.
Malka, G. & Miquel, J. 1996 Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Phys. Rev. Lett. 77 (1), 7578.
McKenna, P., Ledingham, K., Yang, J., Robson, L., McCanny, T., Shimizu, S., Clarke, R., Neely, D., Spohr, K., Chapman, R., Singhal, R., Krushelnick, K., Wei, M. & Norreys, P. 2004 Characterization of proton and heavier ion acceleration in ultrahigh-intensity laser interactions with heated target foils. Phys. Rev. E 70 (3), 036405.
McKenna, P., Robinson, A. P. L., Neely, D., Desjarlais, M. P., Carroll, D. C., Quinn, M. N., Yuan, X. H., Brenner, C. M., Burza, M., Coury, M., Gallegos, P., Gray, R. J., Lancaster, K. L., Li, Y. T., Lin, X. X., Tresca, O. & Wahlström, C.-G. 2011 Effect of lattice structure on energetic electron transport in solids irradiated by ultraintense laser pulses. Phys. Rev. Lett. 106 (18), 185004.
Myatt, J., Theobald, W., Delettrez, J. A., Stoeckl, C., Storm, M., Sangster, T. C., Maximov, A. V. & Short, R. W. 2007 High-intensity laser interactions with mass-limited solid targets and implications for fast-ignition experiments on OMEGA EP. Phys. Plasmas 14 (5), 056301.
Norreys, P. A., Santala, M., Clark, E., Zepf, M., Watts, I., Beg, F. N., Krushelnick, K., Tatarakis, M., Dangor, A. E., Fang, X., Graham, P., McCanny, T., Singhal, R. P., Ledingham, K. W. D., Creswell, A., Sanderson, D. C. W., Magill, J., Machacek, A., Wark, J. S., Allott, R., Kennedy, B. & Neely, D. 1999 Observation of a highly directional ${\it\gamma}$ -ray beam from ultrashort, ultraintense laser pulse interactions with solids. Phys. Plasmas 6 (5), 21502156.
Pérez, F., Kemp, G. E., Regan, S. P., Barrios, M. A., Pino, J., Scott, H., Ayers, S., Chen, H., Emig, J., Colvin, J. D., Bedzyk, M., Shoup, M. J., Agliata, A., Yaakobi, B., Marshall, F. J., Hamilton, R. A., Jaquez, J., Farrell, M., Nikroo, A. & Fournier, K. B. 2014 The NIF x-ray spectrometer calibration campaign at Omega. Rev. Sci. Instrum. 85 (11), 11D613.
Quinn, M. N., Yuan, X. H., Lin, X. X., Carroll, D. C., Tresca, O., Gray, R. J., Coury, M., Li, C., Li, Y. T., Brenner, C. M., Robinson, A. P. L., Neely, D., Zielbauer, B., Aurand, B., Fils, J., Kuehl, T. & McKenna, P. 2011 Refluxing of fast electrons in solid targets irradiated by intense, picosecond laser pulses. Plasma Phys. Control. Fusion 53 (2), 025007.
Santala, M. I. K., Zepf, M., Watts, I., Beg, F. N., Clark, E., Tatarakis, M., Krushelnick, K., Dangor, A. E., Wilks, S. C., Machacek, A. C., Wark, J. S., Allott, R., Clarke, R. J. & Norreys, P. A. 2000 Effect of the plasma density scale length on the direction of fast electrons in relativistic laser–solid interactions. Phys. Rev. Lett. 84 (7), 14591462.
Schwoerer, H., Gibbon, P., Düsterer, S., Behrens, R., Ziener, C., Reich, C. & Sauerbrey, R. 2001 MeV x-rays and photoneutrons from femtosecond laser-produced plasmas. Phys. Rev. Lett. 86 (11), 23172320.
Tanaka, K. A., Yabuuchi, T., Sato, T., Kodama, R., Kitagawa, Y., Takahashi, T., Ikeda, T., Honda, Y. & Okuda, S. 2005 Calibration of imaging plate for high energy electron spectrometer. Rev. Sci. Instrum. 76 (1), 013507.
Wilks, S. C. & Kruer, W. L. 1997 Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas. IEEE J. Quant. Electron. 33 (11), 19541968.
Ziegler, J. F., Ziegler, M. D. & Biersack, J. P. 2010 SRIM The stopping and range of ions in matter (2010). Nucl. Instrum. Meth. Phys. Res. B 268 (11–12), 18181823.
Zulick, C., Hou, B., Dollar, F., Maksimchuk, A., Nees, J., Thomas, A. G. R., Zhao, Z. & Krushelnick, K. 2013 High resolution bremsstrahlung and fast electron characterization in ultrafast intense laser–solid interactions. New J. Phys. 15 (12), 123038.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed