Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T11:51:10.621Z Has data issue: false hasContentIssue false

Localized compressional self-heating in magnetic islands

Published online by Cambridge University Press:  13 December 2022

Daniele Villa*
Affiliation:
Aix-Marseille Université, CNRS, PIIM UMR 7345, 13013 Marseille, France
Nicolas Dubuit
Affiliation:
Aix-Marseille Université, CNRS, PIIM UMR 7345, 13013 Marseille, France
Olivier Agullo
Affiliation:
Aix-Marseille Université, CNRS, PIIM UMR 7345, 13013 Marseille, France
Alexandre Poyé
Affiliation:
Aix-Marseille Université, CNRS, PIIM UMR 7345, 13013 Marseille, France
Xavier Garbet
Affiliation:
CEA, IRFM, F-13108 Saint-Paul-Lez-Durance, France
Andrei Smolyakov
Affiliation:
Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
*
Email address for correspondence: daniele.villa@univ-amu.fr

Abstract

A spontaneous heating process is found to arise in a system where a magnetic island is present due to a linearly unstable tearing mode. The parity, the relative phases and the structure of the fields determined linearly by the tearing mode cause the compression of the plasma in the direction parallel to the magnetic field to heat the plasma in the vicinity of the separatrix in the nonlinear phase. Using a six-field electromagnetic fluid model, the process is found to be present in both two-dimensional single-helicity and three-dimensional multi-helicity simulations with both symmetric and asymmetric magnetic equilibrium profiles. A noteworthy feature of the model is that the higher-order compression terms responsible for the heating process are retained in the equations. The process is believed to be linked to experimental observations of localized hot-spots on externally induced magnetic islands.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agullo, O., Muraglia, M., Benkadda, S., Poyé, A., Dubuit, N. & Garbet, X. 2017 a Nonlinear dynamics of turbulence driven magnetic islands. I. Theoretical aspects. Phys. Plasmas 24 (4), 042308.CrossRefGoogle Scholar
Agullo, O., Muraglia, M., Benkadda, S., Poyé, A., Dubuit, N. & Garbet, X. 2017 b Nonlinear dynamics of turbulence driven magnetic islands. II. Numerical simulations. Phys. Plasmas 24 (4), 042309.CrossRefGoogle Scholar
Borgogno, D., Comisso, L., Grasso, D. & Lazzaro, E. 2014 Nonlinear response of magnetic islands to localized electron cyclotron current injection. Phys. Plasmas 21 (6), 060704.CrossRefGoogle Scholar
Braginskii, S. 1965 Transport processes in a plasma. Rev. Plasma Phys. 1, 216.Google Scholar
Callen, J. & Shaing, K.-C. 1985 A pressure-gradient-driven tokamak “resistive magnetohydrodynamic” instability in the banana-plateau collisionality regime. Phys. Fluids 28 (6), 18451858.CrossRefGoogle Scholar
Carrera, R., Hazeltine, R. & Kotschenreuther, M. 1986 Island bootstrap current modification of the nonlinear dynamics of the tearing mode. Phys. Fluids 29 (4), 899902.CrossRefGoogle Scholar
Choi, M.J., Bardōczi, L., Kwon, J.-M., Hahm, T.S., Park, H.K., Kim, J., Woo, M., Park, B.-H., Yun, G.S., Yoon, E., et al. 2021 Effects of plasma turbulence on the nonlinear evolution of magnetic island in tokamak. Nat. Commun. 12 (1), 19.CrossRefGoogle ScholarPubMed
Dubuit, N., Agullo, O., Muraglia, M., Frank, J., Garbet, X. & Maget, P. 2021 Dynamics of magnetic islands driven by ballooning turbulence. Phys. Plasmas 28 (2), 022308.CrossRefGoogle Scholar
Dudkovskaia, A., Connor, J., Dickinson, D., Hill, P., Imada, K., Leigh, S. & Wilson, H.R. 2021 Drift kinetic theory of neoclassical tearing modes in a low collisionality tokamak plasma: magnetic island threshold physics. Plasma Phys. Control. Fusion 63 (5), 054001.CrossRefGoogle Scholar
Escande, D. & Ottaviani, M. 2004 Simple and rigorous solution for the nonlinear tearing mode. Phys. Lett. A 323 (3–4), 278284.CrossRefGoogle Scholar
Fitzpatrick, R. 1995 Helical temperature perturbations associated with tearing modes in tokamak plasmas. Phys. Plasmas 2 (3), 825838.CrossRefGoogle Scholar
Frank, J., Agullo, O., Maget, P., Garbet, X., Dubuit, N. & Muraglia, M. 2020 A reduced MHD model for ITG-NTM interplay. Phys. Plasmas 27 (2), 022119.CrossRefGoogle Scholar
Giacomin, M., Ricci, P., Coroado, A., Fourestey, G., Galassi, D., Lanti, E., Mancini, D., Richart, N., Stenger, L. & Varini, N. 2022 The GBS code for the self-consistent simulation of plasma turbulence and kinetic neutral dynamics in the tokamak boundary. J. Comput. Phys. 111294.CrossRefGoogle Scholar
Hinton, F. & Horton, C. Jr. 1971 Amplitude limitation of a collisional drift wave instability. Phys. Fluids 14 (1), 116123.CrossRefGoogle Scholar
Hornsby, W., Migliano, P., Buchholz, R., Zarzoso, D., Casson, F., Poli, E. & Peeters, A. 2015 On seed island generation and the non-linear self-consistent interaction of the tearing mode with electromagnetic gyro-kinetic turbulence. Plasma Phys. Control. Fusion 57 (5), 054018.CrossRefGoogle Scholar
Hsu, C., Hazeltine, R. & Morrison, P. 1986 A generalized reduced fluid model with finite ion-gyroradius effects. Phys. Fluids 29 (5), 14801487.CrossRefGoogle Scholar
Ishizawa, A., Kishimoto, Y. & Nakamura, Y. 2019 Multi-scale interactions between turbulence and magnetic islands and parity mixture—a review. Plasma Phys. Control. Fusion 61 (5), 054006.CrossRefGoogle Scholar
Ishizawa, A. & Nakajima, N. 2010 Turbulence driven magnetic reconnection causing long-wavelength magnetic islands. Phys. Plasmas 17 (7), 072308.CrossRefGoogle Scholar
Loizu, J., Huang, Y.-M., Hudson, S., Baillod, A., Kumar, A. & Qu, Z. 2020 Direct prediction of nonlinear tearing mode saturation using a variational principle. Phys. Plasmas 27 (7), 070701.CrossRefGoogle Scholar
Militello, F. & Porcelli, F. 2004 Simple analysis of the nonlinear saturation of the tearing mode. Phys. Plasmas 11 (5), L13L16.CrossRefGoogle Scholar
Muraglia, M., Agullo, O., Benkadda, S., Yagi, M., Garbet, X. & Sen, A. 2011 Generation and amplification of magnetic islands by drift interchange turbulence. Phys. Rev. Lett. 107 (9), 095003.CrossRefGoogle ScholarPubMed
Muraglia, M., Poyé, A., Agullo, O., Dubuit, N. & Garbet, X. 2021 Nonlinear dynamics of NTM seeding by turbulence. Plasma Phys. Control. Fusion 63, 084005.CrossRefGoogle Scholar
Poye, A., Agullo, O., Benkadda, S., Garbet, X. & Smolyakov, A. 2011 Asymmetry and global profile effects on the evolution of magnetic islands. In APS Division of Plasma Physics Meeting Abstracts, vol. 53, pp. NP9–021.Google Scholar
Poyé, A., Agullo, O., Smolyakov, A., Benkadda, S. & Garbet, X. 2013 Global current profile effects on the evolution and saturation of magnetic islands. Phys. Plasmas 20 (2), 020702.CrossRefGoogle Scholar
Reimerdes, H., Sauter, O., Goodman, T. & Pochelon, A. 2002 From current-driven to neoclassically driven tearing modes. Phys. Rev. Lett. 88 (10), 105005.CrossRefGoogle ScholarPubMed
Rutherford, P.H. 1973 Nonlinear growth of the tearing mode. Phys. Fluids 16 (11), 19031908.CrossRefGoogle Scholar
Sauter, O., La Haye, R.J., Chang, Z., Gates, D.A., Kamada, Y., Zohm, H., Bondeson, A., Boucher, D., Callen, J.D., Chu, M.S., et al. 1997 Beta limits in long-pulse tokamak discharges. Phys. Plasmas 4 (5), 16541664.CrossRefGoogle Scholar
Scott, B. 2001 Low frequency fluid drift turbulence in magnetised plasmas. https://inis.iaea.org/search/search.aspx?orig_q=RN:32026069.Google Scholar
Scott, B. 2021 Turbulence and Instabilities in Magnetised Plasmas, 2053-2563, vol. 2. IOP.Google Scholar
Scott, B.D. 2007 Nonlinear polarization and dissipative correspondence between low-frequency fluid and gyrofluid equations. Phys. Plasmas 14 (10), 102318.CrossRefGoogle Scholar
Smolyakov, A. 1998 Gyroviscous forces in a collisionless plasma with temperature gradients. Can. J. Phys. 76 (4), 321.Google Scholar
Smolyakov, A., Poye, A., Agullo, O., Benkadda, S. & Garbet, X. 2013 Higher order and asymmetry effects on saturation of magnetic islands. Phys. Plasmas 20, 062506.CrossRefGoogle Scholar
Snape, J., Gibson, K., O'gorman, T., Barratt, N., Imada, K., Wilson, H., Tallents, G., Chapman, I., et al. 2012 The influence of finite radial transport on the structure and evolution of $m/n= 2/1$ neoclassical tearing modes on MAST. Plasma Phys. Control. Fusion 54 (8), 085001.CrossRefGoogle Scholar
Yagi, M., Itoh, S.-I., Itoh, K., Azumi, M., Diamond, P.H., Fukuyama, A. & Hayashi, T. 2007 Nonlinear drive of tearing mode by microscopic plasma turbulence. Plasma Fusion Res. 2, 025.CrossRefGoogle Scholar
Zholobenko, W., Body, T., Manz, P., Stegmeir, A., Zhu, B., Griener, M., Conway, G., Coster, D., Jenko, F., et al. 2021 Electric field and turbulence in global Braginskii simulations across the ASDEX upgrade edge and scrape-off layer. Plasma Phys. Control. Fusion 63 (3), 034001.CrossRefGoogle Scholar
Zhu, B., Francisquez, M. & Rogers, B.N. 2018 GDB: A global 3D two-fluid model of plasma turbulence and transport in the tokamak edge. Comput. Phys. Commun. 232, 4658.CrossRefGoogle Scholar