Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T17:26:34.050Z Has data issue: false hasContentIssue false

Liouvillian theory of magnetic fluctuations

Published online by Cambridge University Press:  13 March 2009

E. Vanden Eijnden
Affiliation:
Association EURATOM—Etat Belge, Service de Physique Statistique, Plasma et Optique Non-Linéaire CP 231, Université Libre de Bruxelles, Campus Plaine, B-1050 Bruxelles, Belgium
R. Balescu
Affiliation:
Association EURATOM—Etat Belge, Service de Physique Statistique, Plasma et Optique Non-Linéaire CP 231, Université Libre de Bruxelles, Campus Plaine, B-1050 Bruxelles, Belgium

Abstract

The study of the diffusion of magnetic field lines is based on a stochastic model with a Hamiltonian structure. A Liouville equation can then be associated with Hamilton's equations representing the magnetic line. This allows a statistical description of all observable quantities. In particular, the mean-square displacements (MSD) of a field line and the mean-square relative distance (MSRD) of two lines are considered. Equations for these quantities are obtained by applying the direct-interaction approximation (DIA) to the stochastic Liouville equation. The running diffusion coefficient is derived from the MSD equation. The status of the temporal and spatial Markovian approximations in the DIA is discussed. The MSRD's evolution establishes the existence of a clumping effect between two lines, which eventually leads to gyrotropization of the system. A clump life length is defined. In both cases the equations of motion are shown to be identical to the equations obtained within the Langevin treatment of magnetic fluctuations. This shows the equivalence between the DIA and the Corrsin approximation performed in the Langevin approach.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balescu, R. 1975 Equilibrium and Non Equilibrium Statistical Mechanics. North-Holland, Amsterdam.Google Scholar
Balescu, R., Wang, H. D. & Misguich, J. H. 1994 Langevin equation versus kinetic equation: subdiffusive behavior of charged particles in a stochastic magnetic field. Phys. Plasmas 1, 38263842.CrossRefGoogle Scholar
Boutros-Ghali, T. & Dupree, T. H. 1981 Theory of two-point correlation function in a Vlasov plasma. Phys. Fluids 24, 18391858.CrossRefGoogle Scholar
Brissaud, A. & Frisch, U. 1974 Solving linear differential equations, J. Math. Phys. 15, 524534.Google Scholar
Corrsin, S. 1959 Atmospheric Diffusion and Air Pollution (ed. Frenkiel, F. N. & Sheppard, P. A.), p. 161. Academic Press, New York.Google Scholar
Deker, U. & Haake, F. 1975 Fluctuation-dissipation theorems for classical processes. Phys. Rev. A 11, 20432056.CrossRefGoogle Scholar
Dupree, T. H. 1967 Nonlinear theory of drift-wave turbulence and enhanced diffusion. Phys. Fluids 10, 10491055.CrossRefGoogle Scholar
Dupree, T. H. 1970 Theory of resistivity in collisionless plasma. Phys. Rev. Lett. 25, 789792.CrossRefGoogle Scholar
Dupree, T. H. 1972 Theory of phase space granulation in plasma. Phys. Fluids 15, 334344.Google Scholar
Galeev, A. A. & Zelenyi, L. M. 1971 Anomalous electron thermal conductivity across the destroyed magnetic surfaces. Physica D2, 90101.Google Scholar
Isichenko, M. B. 1991 a Effective plasma heat conductivity in ‘braided’ magnetic field-I. Quasi-linear limit. Plasma Phys. Contr. Fusion 33, 795807.CrossRefGoogle Scholar
Isichenko, M. B. 1991 b Effective plasma heat conductivity in ‘braided’ magnetic field -II. Percolation limit. Plasma Phys. Contr. Fusion 33, 809826.Google Scholar
Isichenko, M. B. & Horton, W. 1991 Scaling laws of stochastic E x B plasma transport. Comments Plasma Phys. Contr. Fusion 14, 249262.Google Scholar
Jesen, R. J. 1981 Functional integral approach to classical statistical dynamics. J. Stat. Mech. 25, 183210.Google Scholar
Kadomtsev, B. B. & Pogutse, O. P. 1970 Collisionless relaxation in systems with Coulomb interactions. Phys. Rev. Lett. 25, 11551159.CrossRefGoogle Scholar
Kadomstev, B. B. & Poguste, O. P. 1979 Electron heat conductivity of the plasma across a ‘braided’ magnetic field. Proceedings of 7th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, 1978, Vol. 1, p. 649. International Atomic Energy Agency, Vienna.Google Scholar
Kraichnan, R. H. 1958 Irreversible statistical mechanics of incompressible hydrodynamic turbulence. Phys. Rev. 108, 14071422.Google Scholar
Kraichnan, R. H. 1961 Dynamics of nonlinear stochastic systems. J. Math. Phys. 2, 124148.CrossRefGoogle Scholar
Krommes, J. A. & Similon, P. 1980 Dielectric response in guiding center plasma. Phys. Fluids 23, 15531558.CrossRefGoogle Scholar
Krommes, J. A., Oberman, C. & Kleva, R. G. 1983 Plasma transport in stochastic magnetic fields. Part 3. Kinetics of test particles diffusion. J. Plasma Phys. 30, 1156.CrossRefGoogle Scholar
Krommes, J. A. 1984 Statistical description and plasma physics. Handbook of Plasma Physics, Vol. 2 (ed. Rosenbluth, M. N. & Sagdeev, R. Z.), p. 183. North-Holland, Amsterdam.Google Scholar
Lesile, D. C. 1973 Developments in the Theory of Turbulence. Clarendon Press, Oxford.Google Scholar
Liewer, P. 1985 Measurement of microturbulence in tokamaks and comparison with theories of turbulence and anomalous transport. Nucl. Fusion 22, 543621.Google Scholar
Mccomb, W. D. 1991 The Physics of Fluid Turbulence. Clarendon Press, Oxford.Google Scholar
Martin, P. C., Siggia, E. D. & Rose, H. A. 1973 Statistical dynamics of classical systems. Phys. Rev. A 8, 423437.Google Scholar
Misguich, J. H. & Balescu, R. 1975 Renormalised quasi-linear approximation of plasma turbulence. Part 1. Modification of the Weinstock weak-coupling limit. J. Plasma Phys. 13, 385417.CrossRefGoogle Scholar
Misguich, J. H. & Balescu, R. 1978 a Kinetic theory of binary correlations in turbulent plasmas. J. Plasma Phys. 19, 147176.CrossRefGoogle Scholar
Misguich, J.H., & Balescu, R. 1978 bClumps’ as enhanced correlations and turbulent Debye screening. Plasma Phys. 20, 781823.Google Scholar
Misguich, J. H., Balescu, R., Pecseli, H. L., Mikkeisen, T., Larsen, S. E. & Qiu, X. M. 1987 Diffusion of charged particles in turbulent magnetoplasmas. Plasma Phys. Contr. Fusion 29, 825856.CrossRefGoogle Scholar
Pettini, M., Vulpani, A., Misguich, J. H., De Leener, M., Orban, J. & Balescu, R. 1988 Chaotic diffusion across a magnetic field in a model of electrostatic turbulent plasma. Phys. Rev. A 38, 344363.Google Scholar
Rechester, A. B. & Rosenbluth, M. N. 1978 Electron heat transport in a tokamak with destroyed magnetic surfaces. Phys. Rev. Lett. 40, 3841.Google Scholar
Rosenbluth, M. N., Sagdeev, R. Z., Taylor, J. B. & Zavlavsky, G. M. 1966 Destruction of magnetic surfaces by magnetic field irregularities. Nucl. Fusion 6, 297402.CrossRefGoogle Scholar
Sogimoto, H., Ashida, H. & Kurusawa, T. 1994 Stochastic diffusion of magnetic field lines. Plasma Phys. Contr. Fusion 36, 383402.Google Scholar
Taylor, J. B. & Mcnamara, B. 1971 Plasma diffusion in two dimensions. Phys. Fluids 14, 14921499.CrossRefGoogle Scholar
Wang, H. D., Vlad, M., Vanden eijnden, E., Spineanu, F., Misguich, J. H. & Balescu, R. 1995 Diffusive processes in a stochastic magnetic field. Phys. Rev. E, 51, 48444859.Google Scholar
Zimbardo, G., Veltri, P. & Malara, F. 1984 Diffusion coefficient and Kolmogorov entropy of magnetic field lines. J. Plasma Phys. 32, 141158.CrossRefGoogle Scholar