Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T13:00:05.371Z Has data issue: false hasContentIssue false

Laboratory plasma physics experiments using merging supersonic plasma jets

Published online by Cambridge University Press:  10 December 2014

S. C. Hsu*
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
A. L. Moser
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
E. C. Merritt
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA University of New Mexico, Albuquerque, NM 87131, USA
C. S. Adams
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA University of New Mexico, Albuquerque, NM 87131, USA
J. P. Dunn
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
S. Brockington
Affiliation:
HyperV Technologies Corp., Chantilly, VA 20151, USA
A. Case
Affiliation:
HyperV Technologies Corp., Chantilly, VA 20151, USA
M. Gilmore
Affiliation:
University of New Mexico, Albuquerque, NM 87131, USA
A. G. Lynn
Affiliation:
University of New Mexico, Albuquerque, NM 87131, USA
S. J. Messer
Affiliation:
HyperV Technologies Corp., Chantilly, VA 20151, USA
F. D. Witherspoon
Affiliation:
HyperV Technologies Corp., Chantilly, VA 20151, USA
*
Email address for correspondence: scotthsu@lanl.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 1016 cm−3, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge $\bar{Z}$ ≈ 1, sonic Mach number MsVjet/Cs > 10, jet diameter = 5 cm, and jet length ≈20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

References

REFERENCES

Adams, C. S., Lynn, A. G., Gilmore, M. A., Merritt, E. C., Moser, A. L. and Hsu, S. C. 2012 Schlieren imaging diagnostic for a collisionless shock experiment. Bull. Am. Phys. Soc. 57, 130.Google Scholar
Awe, T. J., Adams, C. S., Davis, J. S., Hanna, D. S., Hsu, S. C. and Cassibry, J. T. 2011 One-dimensional radiation-hydrodynamic scaling studies of imploding spherical plasma liners. Phys. Plasmas 18, 072 705.Google Scholar
Baker, D. A. and Hammel, J. E. 1965 Experimental studies of the penetration of a plasma stream into a transverse magnetic field. Phys. Fluids 8, 713.Google Scholar
Batteh, J. H. 1991 Review of armature research. IEEE Trans. Magn. 27, 224.CrossRefGoogle Scholar
Bellan, P. M., You, S. and Hsu, S. C. 2005 Simulating astrophysical jets in laboratory experiments. Astrophys. Space Sci. 298, 203.CrossRefGoogle Scholar
Casanova, M., Larroche, O. and Matte, J.-P. 1991 Kinetic simulation of a collisional shock wave in a plasma. Phys. Rev. Lett. 67, 2143.Google Scholar
Cassibry, J. T., Stanic, M. and Hsu, S. C. 2013 Ideal hydrodynamic scaling relations for a stagnated imploding spherical plasma liner formed by an array of merging plasma jets. Phys. Plasmas 20, 032 706.Google Scholar
Davis, J. S., Hsu, S. C., Golovkin, I. E., MacFarlane, J. J. and Cassibry, J. T. 2012 One-dimensional radiation-hydrodynamic simulations of imploding spherical plasma liners with detailed equation-of-state modeling. Phys. Plasmas 19, 102 701.CrossRefGoogle Scholar
Degnan, J. H.et al. 2013 Recent magneto-inertial fusion experiments on the field reversed configuration heating experiment. Nucl. Fusion 53, 093 003.Google Scholar
Drake, R. P. 2000 The design of laboratory experiments to produce collisionless shocks of cosmic relevance. Phys. Plasmas 7, 4690.CrossRefGoogle Scholar
Drake, R. P. 2006 High-Energy-Density-Physics. Berlin: Springer.Google Scholar
Fiksel, G., Fox, W., Bhattacharjee, A., Barnak, D. H., Chang, P.-Y., Germaschewski, K., Hu, S. X. and Nilson, P. M. 2014 Magnetic reconnection between colliding magnetized laser-produced plasma plumes. Phys. Rev. Lett. 113, 105 003.CrossRefGoogle ScholarPubMed
Fox, W., Fiksel, G., Bhattacharjee, A., Chang, P.-Y., Germaschewski, K., Hu, S. X. and Nilson, P. M. 2013 Filamentation instability of counterstreaming laser-driven plasmas. Phys. Rev. Lett. 111, 225 002.Google Scholar
Gourdain, P.-A. and Seyler, C. E. 2013 Impact of the hall effect on high-energy-density plasma jets. Phys. Rev. Lett. 110, 015 002.Google Scholar
Haas, D. M.et al. 2011 Supersonic jet formation and propagation in x-pinches. Astrophys. Space Sci. 336, 33.Google Scholar
Hsu, S. C. 2009 Technical summary of the first U.S. plasma jet workshop. J. Fusion Energy 28, 246.Google Scholar
Hsu, S. C.et al. 2012a Spherically imploding plasma liners as a standoff driver for magnetoinertial fusion. IEEE Trans. Plasma Sci. 40, 1287.Google Scholar
Hsu, S. C. and Bellan, P. M. 2005 On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun. Phys. Plasmas 12, 032 103.Google Scholar
Hsu, S. C.et al. 2012b Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications. Phys. Plasmas 19, 123 514.CrossRefGoogle Scholar
Intrator, T.et al. 2004 A high density field reversed configuration (FRC) target for magnetized target fusion: first internal profile measurements of a high density FRC. Phys. Plasmas 11, 25802585.CrossRefGoogle Scholar
Jaffrin, M. Y. and Probstein, R. F. 1964 Structure of a plasma shock wave. Phys. Fluids 7, 1658.CrossRefGoogle Scholar
Ji, H., Toyama, H., Yamagishi, K., Shinohara, S., Fujisawa, A. and Miyamoto, K. 1991 Probe measurements in the REPUTE-1 reversed field pinch. Rev. Sci. Instrum. 62, 2326.CrossRefGoogle Scholar
Kirkpatrick, R. C., Lindemuth, I. R. and Ward, M. S. 1995 Magnetized target fusion: an overview. Fusion Tech. 27, 201.CrossRefGoogle Scholar
Knapp, C. E. and Kirkpatrick, R. C. 2014 Possible energy gain for a plasma-liner-driven magneto-inertial fusion concept. Phys. Plasmas 21, 070 701.CrossRefGoogle Scholar
Li, C. K.et al. 2013 Structure and dynamics of colliding plasma jets. Phys. Rev. Lett. 111, 235 003.CrossRefGoogle ScholarPubMed
Lindemuth, I. R. and Kirkpatrick, R. C. 1983 Parameter space for magnetized fuel targets in inertial confinement fusion. Nucl. Fusion 23, 263.CrossRefGoogle Scholar
Lindemuth, I. R. and Siemon, R. E. 2009 The fundamental parameter space of controlled thermonuclear fusion. Am. J. Phys. 77, 407.Google Scholar
Liu, W. and Hsu, S. C. 2011 Ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma. Nucl. Fusion 51, 073 026.CrossRefGoogle Scholar
Lynn, A. G., Merritt, E., Gilmore, M., Hsu, S. C., Witherspoon, F. D. and Cassibry, J. T. 2010 Diagnostics for the plasma liner experiment. Rev. Sci. Instrum. 81, 10E 115.CrossRefGoogle ScholarPubMed
Merritt, E. C., Lynn, A. G., Gilmore, M. A. and Hsu, S. C. 2012a Multi-chord fiber-coupled interferometer with a long coherence length laser. Rev. Sci. Instrum. 83, 033 506.Google Scholar
Merritt, E. C., Lynn, A. G., Gilmore, M. A., Thoma, C., Loverich, J. and Hsu, S. C. 2012b Multi-chord fiber-coupled interferometry of supersonic plasma jets. Rev. Sci. Instrum. 83, 10D 523.CrossRefGoogle ScholarPubMed
Merritt, E. C., Moser, A. L., Hsu, S. C., Adams, C. S., Dunn, J. P., Holgado, A. M. and Gilmore, M. 2014 Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets. Phys. Plasmas 21, 055 703.CrossRefGoogle Scholar
Merritt, E. C., Moser, A. L., Hsu, S. C., Loverich, J. and Gilmore, M. 2013 Experimental characterization of the stagnation layer between two obliquely merging supersonic plasma jets. Phys. Rev. Lett. 111, 085 003.CrossRefGoogle ScholarPubMed
Moser, A. L. and Bellan, P. M. 2012 Magnetic reconnection from a multiscale instability cascade. Nature 482, 379.Google Scholar
Moser, A. L. and Hsu, S. C. 2014 Observation of ionization-mediated transition from collisionless interpenetration to collisional stagnation during merging of two supersonic plasmas. submitted; http://arxiv.org/abs/1405.2286.Google Scholar
Perkins, L. J., Ho, S. K. and Hammer, J. H. 1988 Deep penetration fuelling of reactor-grade tokamak plasmas with accelerated compact toroids. Nucl. Fusion 28, 1365.Google Scholar
Romero-Talamás, C. A., Bellan, P. M. and Hsu, S. C. 2004 Multielement magnetic probe using commercial chip inductors. Rev. Sci. Instrum. 75, 2664.CrossRefGoogle Scholar
Ross, J. S., Park, H.-S., Berger, R., Divol, L., Kugland, N. L., Rozmus, W., Ryutov, D. and Glenzer, S. H. 2013 Collisionless coupling of ion and electron temperatures in counterstreaming plasma flows. Phys. Rev. Lett. 110, 145 005.CrossRefGoogle ScholarPubMed
Sagdeev, R. Z. and Kennel, C. F. 1991 Collisionless shock waves. Sci. Am. 264, 106.Google Scholar
Santarius, J. F. 2012 Compression of a spherically symmetric deuterium-tritium plasma liner onto a magnetized deuterium-tritium target. Phys. Plasmas 19, 072 705.Google Scholar
Settles, G. S. 2001 Schlieren and Shadowgraph Techniques. New York: Springer.Google Scholar
Slutz, S. A., Herrmann, M. C., Vesey, R. A., Sefkow, A. B., Sinars, D. B., Rovang, D. C., Peterson, K. J. and Cuneo, M. E. 2010 Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field. Phys. Plasmas 17, 056 303.Google Scholar
Swadling, G. F.et al. 2014 Interpenetration, deflection, and stagnation of cylindrically convergent magnetized supersonic tungsten plasma flows. Phys. Rev. Lett. 113, 035 003.Google Scholar
Thio, Y. C. F., Knapp, C. E., Kirkpatrick, R. C., Siemon, R. E. and Turchi, P. J. 2001 A physics exploratory experiment on plasma liner formation. J. Fusion Energy 20, 1.Google Scholar
Thio, Y. C. F., Panarella, E., Kirkpatrick, R. C., Knapp, C. E., Wysocki, F., Parks, P. and Schmidt, G. 1999 Magnetized target fusion in a spheroidal geometry with standoff drivers. In: Proc. of the Second Int. Symp. on Current Trends in Int. Fusion Research, (ed. Panarella, E.). Ottawa: National Research Council of Canada, p. 113.Google Scholar
Thoma, C., Welch, D. R. and Hsu, S. C. 2013 Particle-in-cell simulations of collisionless shock formation via head-on merging of two laboratory supersonic plasma jets. Phys. Plasmas 20, 082 128.Google Scholar
Witherspoon, F. D., Case, A., Messer, S. J., Bomgardner, R. II, Phillips, M. W., Brockington, S. and Elton, R. 2009 A contoured gap coaxial plasma gun with injected plasma armature. Rev. Sci. Instrum. 80, 083 506.Google Scholar