Skip to main content Accessibility help
×
Home

Interpreting magnetic helicity flux in solar flux emergence

  • C. Prior (a1) and D. MacTaggart (a2)

Abstract

Magnetic helicity flux gives information about the topology of a magnetic field passing through a boundary. In solar physics applications, this boundary is the photosphere and magnetic helicity flux has become an important quantity in analysing magnetic fields emerging into the solar atmosphere. In this work we investigate the evolution of magnetic helicity flux in magnetohydrodynamic (MHD) simulations of solar flux emergence. We consider emerging magnetic fields with different topologies and investigate how the magnetic helicity flux patterns correspond to the dynamics of emergence. To investigate how the helicity input is connected to the emergence process, we consider two forms of the helicity flux. The first is the standard form giving topological information weighted by magnetic flux. The second form represents the net winding and can be interpreted as the standard helicity flux less the magnetic flux. Both quantities provide important and distinct information about the structure of the emerging field and these quantities differ significantly for mixed sign helicity fields. A novel aspect of this study is that we account for the varying morphology of the photosphere due to the motion of the dense plasma lifted into the chromosphere. Our results will prove useful for the interpretation of magnetic helicity flux maps in solar observations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Interpreting magnetic helicity flux in solar flux emergence
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Interpreting magnetic helicity flux in solar flux emergence
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Interpreting magnetic helicity flux in solar flux emergence
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: christopher.prior@durham.ac.uk

References

Hide All
Arber, T. D., Haynes, M. & Leake, J. E. 2007 Emergence of a flux tube through a partially ionized solar atmosphere. Astrophys. J. 666 (1), 541.
Arber, T. D., Longbottom, A. W., Gerrard, C. L. & Milne, A. M. 2001 A staggered grid, Lagrangian–Eulerian remap code for 3D MHD simulations. J. Comput. Phys. 171 (1), 151181.
Archontis, V. & Török, T. 2008 Eruption of magnetic flux ropes during flux emergence. Astron. Astrophys. 492 (2), L35L38.
Arnold, V. I. & Khesin, B. A. 1999 Topological Methods in Hydrodynamics, vol. 125. Springer Science & Business Media.
Berger, M. A. 1984 Rigorous new limits on magnetic helicity dissipation in the solar corona. Geophys. Astrophys. Fluid Dyn. 30 (1–2), 79104.
Berger, M. A. 1985 Structure and stability of constant-alpha force-free fields. Astrophys. J. Suppl. 59, 433444.
Berger, M. A. 1988 An energy formula for nonlinear force-free magnetic fields. Astron. Astrophys. 201, 355361.
Berger, M. A. & Field, G. B. 1984 The topological properties of magnetic helicity. J. Fluid Mech. 147, 133148.
Berger, M. A. & Prior, C. 2006 The writhe of open and closed curves. J. Phys. A: Math. Gen. 39 (26), 8321.
Bi, Y., Ying, D. L., Yang, J., Xu, Z. & Ji, K. 2018 A survey of changes in magnetic helicity flux on the photosphere during relatively low-class flares. Astrophys. J. 865, 139.
Călugăreanu, G. 1959 L’intégrale de gauss et l’analyse des nœuds tridimensionnels. Rev. Math. Pures Appl. 4, 520.
Călugăreanu, G. 1961 Sur les classes d’isotopie des noeuds tridimensionnels et leurs invariants. Czech. Math. J. 11 (4), 588625.
Chae, J. 2001 Observational determination of the rate of magnetic helicity transport through the solar surface via the horizontal motion of field line footpoints. Astrophys. J. Lett. 560 (1), L95.
Cheung, M. C. M. & Isobe, H. 2014 Flux emergence (theory). Living Rev. Solar Phys. 11 (1), 3.
Démoulin, P. & Berger, M. A. 2003 Magnetic energy and helicity fluxes at the photospheric level. Solar Phys. 215 (2), 203215.
Démoulin, P., Mandrini, C. H., Van Driel-Gesztelyi, L., Lopez Fuentes, M. C. & Aulanier, G. 2002 The magnetic helicity injected by shearing motions. Solar Phys. 207 (1), 87110.
Démoulin, P. & Pariat, E. 2009 Modelling and observations of photospheric magnetic helicity. Adv. Space Res. 43 (7), 10131031.
Devore, C. R. 2000 Magnetic helicity generation by solar differential rotation. Astrophys. J. 539 (2), 944.
Fan, Y. 2009 The emergence of a twisted flux tube into the solar atmosphere: sunspot rotations and the formation of a coronal flux rope. Astrophys. J. 697 (2), 1529.
Frisch, U., Pouquet, A., Léorat, J. & Mazure, A. 1975 Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 68 (4), 769778.
Guo, Y., Pariat, E., Valori, G., Anfinogentov, S., Chen, F., Georgoulis, M. K., Liu, Y., Moraitis, K., Thalmann, J. K. & Yang, S. 2017 Magnetic helicity estimations in models and observations of the solar magnetic field. iii. twist number method. Astrophys. J. 840 (1), 40.
Hood, A. W., Archontis, V. & MacTaggart, D. 2012 3D MHD flux emergence experiments: idealised models and coronal interactions. Solar Phys. 278 (1), 331.
Jeong, H. & Chae, J. 2007 Magnetic helicity injection in active regions. Astrophys. J. 671 (1), 1022.
Kusano, K., Maeshiro, T., Yokoyama, T. & Sakurai, T. 2002 Measurement of magnetic helicity injection and free energy loading into the solar corona. Astrophys. J. 577 (1), 501.
LaBonte, B. J., Georgoulis, M. K. & Rust, D. M. 2007 Survey of magnetic helicity injection in regions producing X-class flares. Astrophys. J. 671 (1), 955.
Leake, J. E., Linton, M. G. & Török, T. 2013 Simulations of emerging magnetic flux. i. the formation of stable coronal flux ropes. Astrophys. J. 778 (2), 99.
Leka, K. D., Fan, Y. & Barnes, G. 2005 On the availability of sufficient twist in solar active regions to trigger the kink instability. Astrophys. J. 626 (2), 1091.
Leka, K. D. & Skumanich, A. 1999 On the value of ‘ $\unicode[STIX]{x1D6FC}$ ar’ from vector magnetograph data. Solar Phys. 188 (1), 319.
MacTaggart, D., Gregory, S. G., Neukirch, T. & Donati, J.-F. 2016 Magnetohydrostatic modelling of stellar coronae. Mon. Not. R. Astron. Soc. 456, 767774.
MacTaggart, D., Guglielmino, S. L., Haynes, A. L., Simitev, R. & Zuccarello, F. 2015 The magnetic structure of surges in small-scale emerging flux regions. Astron. Astrophys. 576, A4.
MacTaggart, D. & Haynes, A. L. 2014 On magnetic reconnection and flux rope topology in solar flux emergence. Mon. Not. R. Astron. Soc. 438, 15001506.
MacTaggart, D. & Hood, A. W. 2009 On the emergence of toroidal flux tubes: general dynamics and comparisons with the cylinder model. Astron. Astrophys. 507 (2), 9951004.
Moffatt, H. K. 1969 The degree of knottedness of tangled vortex lines. J. Fluid Mech. 35 (1), 117129.
Moratis, K., Pariat, E., Savcheva, A. & Valori, G. 2018 Computation of relative magnetic helicity in spherical coordinates. Solar Phys. 293, 92.
Moreno-Insertis, F. & Galsgaard, K. 2013 Plasma jets and eruptions in solar coronal holes: a three-dimensional flux emergence experiment. Astrophys. J. 771 (1), 20.
Murray, M. J., Hood, A. W., Moreno-Insertis, F., Galsgaard, K. & Archontis, V. 2006 3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube. Astron. Astrophys. 460, 909.
Pariat, E., Démoulin, P. & Berger, M. A. 2005 Photospheric flux density of magnetic helicity. Astron. Astrophys. 439 (3), 11911203.
Pariat, E., Leake, J. E., Valori, G., Linton, M. G., Zuccarello, F. P. & Dalmasse, K. 2017 Relative magnetic helicity as a diagnostic of solar eruptivity. Astron. Astrophys. 601, A125.
Pariat, E., Nindos, A., Démoulin, P. & Berger, M. A. 2006 What is the spatial distribution of magnetic helicity injected in a solar active region? Astron. Astrophys. 452 (2), 623630.
Pariat, E., Valori, G., Démoulin, P. & Dalmasse, K. 2015 Testing magnetic helicity conservation in a solar-like active event. Astron. Astrophys. 580, A128.
Pevtsov, A. A., Canfield, R. C., Sakurai, T. & Hagino, M. 2008 On the solar cycle variation of the hemispheric helicity rule. Astrophys. J. 677 (1), 719.
Pevtsov, A. A., Canfield, R. C. & Metcalf, T. R. 1995 Latitudinal variation of helicity of photospheric magnetic fields. Astrophys. J. 440, L109L112.
Pevtsov, A. A., Maleev, V. M. & Longcope, D. W. 2003 Helicity evolution in emerging active regions. Astrophys. J. 593 (2), 1217.
Pontin, D. I. & Hornig, G. 2015 The structure of current layers and degree of field-line braiding in coronal loops. Astrophys. J. 805 (1), 47.
Prior, C. & MacTaggart, D. 2016 The emergence of braided magnetic fields. Geophys. Astrophys. Fluid Dyn. 110 (5), 432457.
Prior, C. & Yeates, A. R. 2014 On the helicity of open magnetic fields. Astrophys. J. 787 (2), 100.
Prior, C. & Yeates, A. R. 2016 Twisted versus braided magnetic flux ropes in coronal geometry-i. construction and relaxation. Astron. Astrophys. 587, A125.
Prior, C. & Yeates, A. R. 2018 Quantifying reconnective activity in braided vector fields. Phys. Rev. E 98 (1), 013204.
Russell, A. J. B., Yeates, A. R., Hornig, G. & Wilmot-Smith, A. L. 2015 Evolution of field line helicity during magnetic reconnection. Phys. Plasmas 22 (3), 032106.
Scherrer, P. H., Schou, J., Bush, R. I., Kosovichev, A. G., Bogart, R. S., Hoeksema, J. T., Liu, Y., Duvall, T. L., Zhao, J., Schrijver, C. J. et al. 2012 The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Phys. 275 (1–2), 207227.
Schindler, K., Hesse, M. & Birn, J. 1988 General magnetic reconnection, parallel electric fields, and helicity. J. Geophys. Res. 93 (A6), 55475557.
Schuck, P. W. 2008 Tracking vector magnetograms with the magnetic induction equation. Astrophys. J. 683, 11341152.
Sturrock, Z., Hood, A. W., Archontis, V. & McNeill, C. M. 2015 Sunspot rotation-i. a consequence of flux emergence. Astron. Astrophys. 582, A76.
Taylor, J. B. 1974 Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33 (19), 1139.
Valori, G., Démoulin, P. & Pariat, E. 2012 Comparing valus of the relative magnetic helicity in finite volumes. Solar Phys. 278, 347366.
Van Leer, B. 1979 Towards the ultimate conservative difference scheme. v. a second-order sequel to Godunov’s method. J. Comput. Phys. 32 (1), 101136.
Vemareddy, P. 2015 Investigation of helicity and energy flux transport in three emerging solar active regions. Astrophys. J. 806 (2), 245.
Vemareddy, P. & Démoulin, P. 2017 Successive injection of opposite magnetic helicity in solar active region NOAA 11928. Astron. Astrophys. 597, A104.
White, J. H. 1969 Self-linking and the Gauss integral in higher dimensions. Am. J. Maths 91 (3), 693728.
Wilkins, M. L. 1980 Use of artificial viscosity in multidimensional fluid dynamic calculations. J. Comput. Phys. 36 (3), 281303.
Wilmot-Smith, A. L., Pontin, D. I. & Hornig, G. 2010 Dynamics of braided coronal loops-i. onset of magnetic reconnection. Astron. Astrophys. 516, A5.
Wilmot-Smith, A. L., Pontin, D. I., Yeates, A. R. & Hornig, G. 2011 Heating of braided coronal loops. Astron. Astrophys. 536, A67.
Woltjer, L. 1958 A theorem on force-free magnetic fields. Proc. Natl Acad. Sci. 44 (6), 489491.
Yamamoto, T. T., Kusano, K., Maeshiro, T., Yokoyama, T. & Sakurai, T. 2005 Magnetic helicity injection and sigmoidal coronal loops. Astrophys. J. 624, 10721079.
Yeates, A. R. & Hornig, G. 2016 The global distribution of magnetic helicity in the solar corona. Astron. Astrophys. 594, A98.
Yokoyama, T., Kusano, K., Maeshiro, T. & Sakurai, T. 2003 Relation between magnetic helicity injection and flare activities in active region NOAA 8100. Adv. Space Res. 32 (10), 19491952.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed