Skip to main content Accessibility help
×
Home

Interplay between Kelvin–Helmholtz and lower-hybrid drift instabilities

  • Jérémy Dargent (a1), Federico Lavorenti (a1) (a2), Francesco Califano (a1), Pierre Henri (a2) (a3), Francesco Pucci (a4) and Silvio S. Cerri (a5)...

Abstract

Boundary layers in space and astrophysical plasmas are the location of complex dynamics where different mechanisms coexist and compete, eventually leading to plasma mixing. In this work, we present fully kinetic particle-in-cell simulations of different boundary layers characterized by the following main ingredients: a velocity shear, a density gradient and a magnetic gradient localized at the same position. In particular, the presence of a density gradient drives the development of the lower-hybrid drift instability (LHDI), which competes with the Kelvin–Helmholtz instability (KHI) in the development of the boundary layer. Depending on the density gradient, the LHDI can even dominate the dynamics of the layer. Because these two instabilities grow on different spatial and temporal scales, when the LHDI develops faster than the KHI an inverse cascade is generated, at least in two dimensions. This inverse cascade, starting at the LHDI kinetic scales, generates structures at scale lengths at which the KHI would typically develop. When that is the case, those structures can suppress the KHI itself because they significantly affect the underlying velocity shear gradient. We conclude that, depending on the density gradient, the velocity jump and the width of the boundary layer, the LHDI in its nonlinear phase can become the primary instability for plasma mixing. These numerical simulations show that the LHDI is likely to be a dominant process at the magnetopause of Mercury. These results are expected to be of direct impact to the interpretation of the forthcoming BepiColombo observations.

Copyright

Corresponding author

Email address for correspondence: jeremy.dargent@df.unipi.it

References

Hide All
Bingham, R., Dawson, J. M. & Shapiro, V. D. 2002 Particle acceleration by lower-hybrid turbulence. J. Plasma Phys. 68 (3), 161172.
Brackbill, J. U., Forslund, D. W., Quest, K. B. & Winske, D. 1984 Nonlinear evolution of the lower-hybrid drift instability. Phys. Fluids 27 (11), 26822693.
Camporeale, E., Delzanno, G. L. & Colestock, P. 2012 Lower hybrid to whistler mode conversion on a density striation. J. Geophys. Res. 117, A10315.
Carter, T. A., Ji, H., Trintchouk, F., Yamada, M. & Kulsrud, R. M. 2001 Measurement of lower-hybrid drift turbulence in a reconnecting current sheet. Phys. Rev. Lett. 88, 015001.
Carter, T. A., Yamada, M., Ji, H., Kulsrud, R. M. & Trintchouk, F. 2002 Experimental study of lower-hybrid drift turbulence in a reconnecting current sheet. Phys. Plasmas 9 (8), 32723288.
Cerri, S. 2018 Finite-larmor-radius equilibrium and currents of the earths flank magnetopause. J. Plasma Phys. 84 (5), 555840501.
Cerri, S. S., Henri, P., Califano, F., Del Sarto, D., Faganello, M. & Pegoraro, F. 2013 Extended fluid models: pressure tensor effects and equilibria. Phys. Plasmas 20 (11), 112112.
Cerri, S. S., Pegoraro, F., Califano, F., Del Sarto, D. & Jenko, F. 2014 Pressure tensor in the presence of velocity shear: stationary solutions and self-consistent equilibria. Phys. Plasmas 21 (11), 112109.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.
Daughton, W. 2003 Electromagnetic properties of the lower-hybrid drift instability in a thin current sheet. Phys. Plasmas 10 (8), 31033119.
Daughton, W., Lapenta, G. & Ricci, P. 2004 Nonlinear evolution of the lower-hybrid drift instability in a current sheet. Phys. Rev. Lett. 93, 105004.
Davidson, R. C. 1978 Quasilinear stabilization of lower-hybrid-drift instability. Phys. Fluids 21 (8), 13751380.
Davidson, R. C., Gladd, N. T., Wu, C. S. & Huba, J. D. 1977 Effects of finite plasma beta on the lower-hybrid-drift instability. Phys. Fluids 20 (2), 301310.
De Camillis, S., Cerri, S. S., Califano, F. & Pegoraro, F. 2016 Pressure anisotropy generation in a magnetized plasma configuration with a shear flow velocity. Plasma Phys. Control. Fusion 58 (4), 045007.
Delamere, P. A., Wilson, R. J., Eriksson, S. & Bagenal, F. 2013 Magnetic signatures of Kelvin–Helmholtz vortices on Saturn’s magnetopause: global survey. J. Geophys. Res. 118, 393404.
Derouillat, J., Beck, A., Pérez, F., Vinci, T., Chiaramello, M., Grassi, A., Flé, M., Bouchard, G., Plotnikov, I., Aunai, N. et al. 2018 Smilei: a collaborative, open-source, multi-purpose particle-in-cell code for plasma simulation. Comput. Phys. Commun. 222, 351373.
Drake, J. F., Gladd, N. T. & Huba, J. D. 1981 Magnetic field diffusion and dissipation in reversedfield plasmas. Phys. Fluids 24 (1), 7887.
Drake, J. F., Guzdar, P. N., Hassam, A. B. & Huba, J. D. 1984 Nonlinear mode coupling theory of the lower-hybrid-drift instability. Phys. Fluids 27 (5), 11481159.
Fadanelli, S., Faganello, M., Califano, F., Cerri, S. S., Pegoraro, F. & Lavraud, B. 2018 North–south asymmetric Kelvin–Helmholtz instability and induced reconnection at the earth’s magnetospheric flanks. J. Geophys. Res. 123 (11), 93409356.
Faganello, M. & Califano, F. 2017 Magnetized Kelvin–Helmholtz instability: theory and simulations in the earths magnetosphere context. J. Plasma Phys. 83 (6), 535830601.
Faganello, M., Califano, F. & Pegoraro, F. 2008a Competing mechanisms of plasma transport in inhomogeneous configurations with velocity shear: the solar-wind interaction with earth’s magnetosphere. Phys. Rev. Lett. 100, 015001.
Faganello, M., Califano, F. & Pegoraro, F. 2008b Numerical evidence of undriven, fast reconnection in the solar-wind interaction with earth’s magnetosphere: formation of electromagnetic coherent structures. Phys. Rev. Lett. 101, 105001.
Faganello, M., Califano, F. & Pegoraro, F. 2009 Being on time in magnetic reconnection. New J. Phys. 11 (6), 063008.
Fujimoto, M., Mukai, T., Kawano, H., Nakamura, M., Nishida, A., Saito, Y., Yamamoto, T. & Kokubun, S. 1998 Structure of the low-latitude boundary layer: a case study with geotail data. J. Geophys. Res. 103 (A2), 22972308.
Gary, S. P. 1983 Linear density drift instabilities in very low beta plasmas: a different approach. J. Plasma Phys. 30 (1), 7594.
Gary, S. P. 1993 Theory of Space Plasma Microinstabilities. Cambridge University Press.
Gary, S. P. & Sanderson, J. J. 1978 Density gradient drift instabilities: oblique propagation at zero beta. Phys. Fluids 21 (7), 11811187.
Gary, S. P. & Sanderson, J. J. 1979 Electrostatic temperature gradient drift instabilities. Phys. Fluids 22 (8), 15001509.
Gary, S. P. & Sgro, A. G. 1990 The lower hybrid drift instability at the magnetopause. Geophys. Res. Lett. 17 (7), 909912.
Gershman, D. J., Raines, J. M., Slavin, J. A., Zurbuchen, T. H., Sundberg, T., Boardsen, S. A., Anderson, B. J., Korth, H. & Solomon, S. C. 2015 MESSENGER observations of multiscale Kelvin–Helmholtz vortices at Mercury. J. Geophys. Res. 120, 43544368.
Gingell, P. W., Sundberg, T. & Burgess, D. 2015 The impact of a hot sodium ion population on the growth of the Kelvin–Helmholtz instability in mercury’s magnetotail. J. Geophys. Res. 120 (7), 54325442.
Graham, D. B., Khotyaintsev, Y. V., Vaivads, A., André, M. & Fazakerley, A. N. 2014 Electron dynamics in the diffusion region of an asymmetric magnetic reconnection. Phys. Rev. Lett. 112, 215004.
Graham, D. B., Khotyaintsev, Y. V., Vaivads, A., Norgren, C., André, M., Webster, J. M., Burch, J. L., Lindqvist, P.-A., Ergun, R. E., Torbert, R. B. et al. 2017 Instability of agyrotropic electron beams near the electron diffusion region. Phys. Rev. Lett. 119, 025101.
Guglielmi, A. V., Potapov, A. S. & Klain, B. I. 2010 Rayleigh–Taylor–Kelvin–Helmholtz combined instability at the magnetopause. Geomagn. Aeron. 50 (8), 958962.
Haaland, S., Reistad, J., Tenfjord, P., Gjerloev, J., Maes, L., DeKeyser, J., Maggiolo, R., Anekallu, C. & Dorville, N. 2014 Characteristics of the flank magnetopause: cluster observations. J. Geophys. Res. 119 (11), 90199037.
Hasegawa, H., Fujimoto, M., Maezawa, K., Saito, Y. & Mukai, T. 2003 Geotail observations of the dayside outer boundary region: interplanetary magnetic field control and dawn–dusk asymmetry. J. Geophys. Res. 108 (A4), 1163.
Hasegawa, H., Fujimoto, M., Phan, T. D., Rème, H., Balogh, A., Dunlop, M. W., Hashimoto, C. & TanDokoro, R. 2004 Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin–Helmholtz vortices. Nature 430 (7001), 755758.
Henri, P., Cerri, S. S., Califano, F., Pegoraro, F., Rossi, C., Faganello, M., Šebek, O., Trávníček, P. M., Hellinger, P. & Frederiksen, J. T. 2013 Nonlinear evolution of the magnetized Kelvin–Helmholtz instability: from fluid to kinetic modeling. Phys. Plasmas 20 (10), 102118.
Huba, J. D., Drake, J. F. & Gladd, N. T. 1980 Lower-hybrid-drift instability in field reversed plasmas. Phys. Fluids 23 (3), 552561.
Huba, J. D., Gladd, N. T. & Papadopoulos, K. 1978 Lower-hybrid-drift wave turbulence in the distant magnetotail. J. Geophys. Res. 83 (A11), 52175226.
Huba, J. D. & Ossakow, S. L. 1980 Influence of magnetic shear on the current convective instability in the diffuse aurora. J. Geophys. Res. 85 (A12), 68746876.
Kasaba, Y., Bougeret, J.-L., Blomberg, L., Kojima, H., Yagitani, S., Moncuquet, M., Trotignon, J.-G., Chanteur, G., Kumamoto, A., Kasahara, Y. et al. 2010 The plasma wave investigation (pwi) onboard the bepicolombo/mmo: first measurement of electric fields, electromagnetic waves, and radio waves around mercury. Planet. Space Sci. 58 (1), 238278; comprehensive Science Investigations of Mercury: the scientific goals of the joint ESA/JAXA mission BepiColombo.
Lapenta, G. & Brackbill, J. U. 2002 Nonlinear evolution of the lower hybrid drift instability: current sheet thinning and kinking. Phys. Plasmas 9 (5), 15441554.
Le, A., Daughton, W., Chen, L.-J. & Egedal, J. 2017 Enhanced electron mixing and heating in 3-d asymmetric reconnection at the earth’s magnetopause. Geophys. Res. Lett. 44 (5), 20962104.
Le, A., Daughton, W., Ohia, O., Chen, L.-J., Liu, Y.-H., Wang, S., Nystrom, W. D. & Bird, R. 2018 Drift turbulence, particle transport, and anomalous dissipation at the reconnecting magnetopause. Phys. Plasmas 25 (6), 062103.
Leroy, M. H. J. & Keppens, R. 2017 On the influence of environmental parameters on mixing and reconnection caused by the Kelvin–Helmholtz instability at the magnetopause. Phys. Plasmas 24 (1), 012906.
Liljeblad, E., Karlsson, T., Raines, J. M., Slavin, J. A., Kullen, A., Sundberg, T. & Zurbuchen, T. H. 2015 MESSENGER observations of the dayside low-latitude boundary layer in Mercury’s magnetosphere. J. Geophys. Res. 120 (10), 83878400.
Liljeblad, E., Sundberg, T., Karlsson, T. & Kullen, A. 2014 Statistical investigation of Kelvin–Helmholtz waves at the magnetopause of Mercury. J. Geophys. Res. 119, 96709683.
Malara, F., Pezzi, O. & Valentini, F. 2018 Exact hybrid vlasov equilibria for sheared plasmas with in-plane and out-of-plane magnetic field. Phys. Rev. E 97, 053212.
Masters, A., Achilleos, N., Cutler, J. C., Coates, A. J., Dougherty, M. K. & Jones, G. H. 2012 Surface waves on Saturn’s magnetopause. Planet. Space Sci. 65, 109121.
Matsumoto, Y. & Hoshino, M. 2004 Onset of turbulence induced by a Kelvin–Helmholtz vortex. Geophys. Res. Lett. 31, L02807.
Matsumoto, Y. & Hoshino, M. 2006 Turbulent mixing and transport of collisionless plasmas across a stratified velocity shear layer. J. Geophys. Res. 111, A05213.
Matsumoto, Y. & Seki, K. 2010 Formation of a broad plasma turbulent layer by forward and inverse energy cascades of the Kelvin–Helmholtz instability. J. Geophys. Res. 115, A10231.
Michalke, A. 1964 On the inviscid instability of the hyperbolictangent velocity profile. J. Fluid Mech. 19 (4), 543556.
Miura, A. & Pritchett, P. L. 1982 Nonlocal stability analysis of the mhd Kelvin–Helmholtz instability in a compressible plasma. J. Geophys. Res. 87 (A9), 74317444.
Mozer, F. S. & Pritchett, P. L. 2011 Electron physics of asymmetric magnetic field reconnection. Space Sci. Rev. 158 (1), 119143.
Nakamura, T., Hasegawa, H., Daughton, W., Eriksson, S., Li, W. Y. & Nakamura, R. 2017 Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas. Nature Commun. 8 (1), 1582.
Nakamura, T. K. M. & Daughton, W. 2014 Turbulent plasma transport across the earth’s low-latitude boundary layer. Geophys. Res. Lett. 41 (24), 87048712.
Nakamura, T. K. M., Daughton, W., Karimabadi, H. & Eriksson, S. 2013 Three-dimensional dynamics of vortex-induced reconnection and comparison with THEMIS observations. J. Geophys. Res. 118 (9), 57425757.
Nakamura, T. K. M. & Fujimoto, M. 2005 Magnetic reconnection within rolled-up mhd-scale Kelvin–Helmholtz vortices: two-fluid simulations including finite electron inertial effects. Geophys. Res. Lett. 32, L21102.
Nakamura, T. K. M. & Fujimoto, M. 2008 Magnetic effects on the coalescence of Kelvin–Helmholtz vortices. Phys. Rev. Lett. 101, 165002.
Nakamura, T. K. M., Hasegawa, H. & Shinohara, I. 2010 Kinetic effects on the Kelvin–Helmholtz instability in ion-to-magnetohydrodynamic scale transverse velocity shear layers: particle simulations. Phys. Plasmas 17 (4), 042119.
Norgren, C., Vaivads, A., Khotyaintsev, Y. V. & André, M. 2012 Lower hybrid drift waves: space observations. Phys. Rev. Lett. 109, 055001.
Paral, J. & Rankin, R. 2013 Dawn–dusk asymmetry in the Kelvin–Helmholtz instability at Mercury. Nature Commun. 4, 1645.
Price, L., Swisdak, M., Drake, J. F., Cassak, P. A., Dahlin, J. T. & Ergun, R. E. 2016 The effects of turbulence on threedimensional magnetic reconnection at the magnetopause. Geophys. Res. Lett. 43 (12), 60206027.
Pritchett, P. L. & Coroniti, F. V. 1984 The collisionless macroscopic Kelvin–Helmholtz instability: 1. Transverse electrostatic mode. J. Geophys. Res. 89 (A1), 168178.
Pritchett, P. L., Mozer, F. S. & Wilber, M. 2012 Intense perpendicular electric fields associated with three-dimensional magnetic reconnection at the subsolar magnetopause. J. Geophys. Res. 117, A06212.
Roytershteyn, V., Daughton, W., Karimabadi, H. & Mozer, F. S. 2012 Influence of the lower-hybrid drift instability on magnetic reconnection in asymmetric configurations. Phys. Rev. Lett. 108, 185001.
Roytershteyn, V., Dorfman, S., Daughton, W., Ji, H., Yamada, M. & Karimabadi, H. 2013 Electromagnetic instability of thin reconnection layers: comparison of three-dimensional simulations with MRX observations. Phys. Plasmas 20 (6), 061212.
Sgro, A. G., Peter Gary, S. & Lemons, D. S. 1989 Expanding plasma structure and its evolution toward long wavelengths. Phys. Fluids B 1 (9), 18901899.
Shapiro, V. D., Shevchenko, V. I., Cargill, P. J. & Papadopoulos, K. 1994 Modulational instability of lower hybrid waves at the magnetopause. J. Geophys. Res. 99 (A12), 2373523740.
Singh, N. & Leung, W. C. 1998 Numerical simulation of plasma processes occurring in the ram region of the tethered satellite. Geophys. Res. Lett. 25 (5), 741744.
Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Gloeckler, G., Gold, R. E., Ho, G. C., Killen, R. M., Korth, H. et al. 2008 Mercury’s magnetosphere after messenger’s first flyby. Science 321 (5885), 8589.
Sundberg, T., Boardsen, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., Raines, J. M. & Solomon, S. C. 2012 MESSENGER orbital observations of large-amplitude Kelvin–Helmholtz waves at Mercury’s magnetopause. J. Geophys. Res. 117, A04216.
Takagi, K., Hashimoto, C., Hasegawa, H., Fujimoto, M. & TanDokoro, R. 2006 Kelvin–Helmholtz instability in a magnetotail flank-like geometry: three-dimensional mhd simulations. J. Geophys. Res. 111, A08202.
Umeda, T., Miwa, J.-i, Matsumoto, Y., Nakamura, T. K. M., Togano, K., Fukazawa, K. & Shinohara, I. 2010 Full electromagnetic vlasov code simulation of the Kelvin–Helmholtz instability. Phys. Plasmas 17 (5), 052311.
Umeda, T., Ueno, S. & Nakamura, T. K. M. 2014 Ion kinetic effects on nonlinear processes of the Kelvin–Helmholtz instability. Plasma Phys. Control. Fusion 56 (7), 075006.
Yoo, J., Jara-Almonte, J., Yerger, E., Wang, S., Qian, T., Le, A., Ji, H., Yamada, M., Fox, W., Kim, E.-H. et al. 2018 Whistler wave generation by anisotropic tail electrons during asymmetric magnetic reconnection in space and laboratory. Geophys. Res. Lett. 45 (16), 80548061.
Yoo, J., Na, B., Jara-Almonte, J., Yamada, M., Ji, H., Roytershteyn, V., Argall, M. R., Fox, W. & Chen, L.-J. 2017 Electron heating and energy inventory during asymmetric reconnection in a laboratory plasma. J. Geophys. Res. 122 (9), 92649281.
Yoo, J., Wang, S., Yerger, E., Jara-Almonte, J., Ji, H., Yamada, M., Chen, L.-J., Fox, W., Goodman, A. & Alt, A. 2019 Whistler wave generation by electron temperature anisotropy during magnetic reconnection at the magnetopause. Phys. Plasmas 26 (5), 052902.
Yoo, J., Yamada, M., Ji, H., Jara-Almonte, J., Myers, C. E. & Chen, L.-J. 2014 Laboratory study of magnetic reconnection with a density asymmetry across the current sheet. Phys. Rev. Lett. 113, 095002.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Dargent et al. supplementary material
Dargent et al. supplementary material

 Unknown (41.6 MB)
41.6 MB

Interplay between Kelvin–Helmholtz and lower-hybrid drift instabilities

  • Jérémy Dargent (a1), Federico Lavorenti (a1) (a2), Francesco Califano (a1), Pierre Henri (a2) (a3), Francesco Pucci (a4) and Silvio S. Cerri (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed