Skip to main content Accessibility help
×
Home

High yield fusion in a staged Z-pinch

  • H. U. RAHMAN (a1), F. J. WESSEL (a1), N. ROSTOKER (a1) and P. H. NEY (a2)

Abstract

We simulate fusion in a Z-pinch, where the load is a xenon-plasma liner imploding onto a deuterium–tritium (DT) plasma target and the driver is a 2 MJ, 17 MA, 95 ns risetime pulser. The implosion system is modeled using the dynamic, 2D, radiation-magnetohydrodynamic code, MACH2. During implosion a shock forms in the Xe liner, transporting current and energy radially inward. After collision with the DT, a secondary shock forms pre-heating the DT to several hundred electronvolts. Adiabatic compression leads subsequently to a fusion burn, as the target is surrounded by a flux-compressed, intense, azimuthal-magnetic field. The intense-magnetic field confines fusion α-particles, providing an additional source of ion heating that leads to target ignition. The target remains stable up to the time of ignition. Predictions are for a neutron yield of 3.0 × 1019 and a thermonuclear energy of 84 MJ, that is, 42 times greater than the initial, capacitor-stored energy.

Copyright

References

Hide All
Appartaim, R. K. and Dangor, A. E. 1998 Large magnetic fields generated by z-pinch flux compression. J. Appl. Phys. 84 (8), 41704175.
Bailey, J., Fisher, A. and Rostoker, N. 1986 Coupling of radiation and hydrodynamics in a z pinch plasma. J. Appl. Phys. 60, 1939.
Chaikovsky, S. A. and Sorokin, S. A. 1997 Density, temperature, and size of a plasma produced in a single and double shell liner implosion. The Fourth International Conference on High Density Z-Pinches, Vol. 409. New York: American Institute of Physics.
Chang, T. F., Fisher, A. and Van Drie, A. 1991 X-ray results from a modified nozzle and double gas puff z pinch. J. Appl. Phys. 69, 3447.
Chittenden, J. P., Ciardi, A., Jennings, C. A., Lebedev, S. V., Hammer, D. A., Pikuz, S. A. and Shelkovenko, T. A. 2007 Structural evolution and formation of high-pressure plasmas in x pinches. Phys. Rev. Lett. 98 (2).
Coverdale, C. A. et al. 2007 Neutron production and implosion characteristics of a deuterium gas-puff z pinch. Phys. Plasmas 14 (2), 022706.
Coverdale, C. A., Deeney, C., Velikovich, A. L., Davis, J., Clark, R. W., Chong, Y. K., Chittenden, J., Chantrenne, S., Ruiz, C. L. and Cooper, G. W. 2007 Deuterium gas-puff z-pinch implosions on the z accelerator. Phys. Plasmas 14 (5).
DeGroot, J. S., Deeney, C., Sanford, T. W. L., Spielman, R. B., Estabrook, K. G., Hammer, J. H., Ryutov, D. and Toor, A. 1997 High velocity implosions on pbfa z. The Fourth International Conference on High Density Z-Pinches, Vol. 409. New York: American Institute of Physics.
DeGroot, J. S., Toor, A., Goldberg, S. M. and Liberman, M. A. 1997 Growth of the Rayleigh–Taylor instability in an imploding z-pinch. Phys. Plasmas 4 (3), 737747.
Failor, B. H., Sze, H., Banister, J., Levine, J. S., Qi, N., Apruzese, J. P. and Lojewski, D. Y. 2007 Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff z-pinch implosions. Phys. Plasmas 15 (2), 022703022900.
Felber, F. S. 1982 Self-similar oscillations of a z pinch. Phys. Fluids 25 (4), 643.
Glazyrin, I. V., Diyankov, O. V., Karlykhanov, N. G. and Koshelev, S. V. Numerical analysis of mhd instability suppression in a double gas puff. The Fourth International Conference on High Density Z-Pinches, Vol. 409. New York: American Institute of Physics.
Haines, M. G., Lebedev, S. V., Chittenden, J. P., Beg, F. N., Bland, S. N. and Dangor, A. E. 2000 The past, present, and future of z pinches. Phys. Plasmas 7 (2), 16721680.
Levine, J. S., Banister, J. W., Failor, B. H., Qi, N., Sze, H. M., Velikovich, A. L., Commisso, R. J., Davis, J. and Lojewski, D. 2006 Implosion dynamics and radiative characteristics of a high yield structured gas puff load. Phys. Plasmas 13, 082702–1.
Matzen, M. K. 1997 Z pinches as intense x-ray sources for high-energy density physics applications. Phys. Plasmas 4 (5), 15191527.
Ney, P., Rahman, H. U., Rostoker, N. and Wessel, F. J. 2001 Staged z-pinch for controlled fusion. Phys. Plasmas 8, 616.
Peterkin, R. E., Frese, M. H. and Sovinec, C. R. 1998 Transport of magnetic flux in an arbitrary coordinate ale code. J. Comput. Physics 140 (1), 148171.
Qi, N., Sze, H., Failor, B. H., Banister, J., Levine, J. S., Riorden, J. C., Steen, P., Sincerney, P. and Lojewski, D. 2008 Magnetic Rayleigh–Taylor instability mitigation in large-diameter gas puff z-pinch implosions. Phys. Plasmas 15 (2), 022703-1–022703-9.
Rahman, H. U., Ney, P., Wessel, F. J., Fisher, A. and Rostoker, N. 1989 Thermonuclear fusion by a z-θ pinch. Dense Z-Pinches, Vol. 195. New York: American Institute of Physics.
Rahman, H. U., Wessel, F. J. and Rostoker, N. 1995 Staged z-pinch. Phys. Rev. Lett. 74, 714.
Rahman, H. U., Ney, P., Van Drie, A., Rostoker, N. and Wessel, F. J. 2004 Control of the Rayleigh-Taylor Instability in a Staged Z-pinch. Phys. Plasmas 11, 5595.
Rostoker, N. and Tahsiri, H. 1978 Rayleigh Taylor Instability for Impulsively Accelerated Shells; A perspective of Physics (ed. Peierls, Sir Rudolph). New York: Gordon and Breech.
Ryutov, D. D., Derzon, M. S. and Matzen, M. K. 2000 The physics of fast z pinches. Rev. Mod. Phys. 72, 167224.
Shiloh, J., Fisher, A. and Rostoker, N. 1978 Z pinch of a gas jet. Phys. Rev. Lett. 40, 515.
Velikovich, A. L., Cochran, F. L. and Davis, J.Suppression of Rayleigh–Taylor instability in z-pinch loads with tailored density profiles. Phys. Rev. Lett. 77 (5), 853856.
Yu, E. P. et al. 2008 Three-dimensional effects in trailing mass in the wire-array z pinch. Phys. Plasmas 15, 056301-1–056301-9.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Related content

Powered by UNSILO

High yield fusion in a staged Z-pinch

  • H. U. RAHMAN (a1), F. J. WESSEL (a1), N. ROSTOKER (a1) and P. H. NEY (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.