Skip to main content Accessibility help

High resolution electron beam measurements on the ALPHA-X laser–plasma wakefield accelerator

  • G. H. WELSH (a1), S. M. WIGGINS (a1), R. C. ISSAC (a1), E. BRUNETTI (a1), G. G. MANAHAN (a1), M. R. ISLAM (a1), S. CIPICCIA (a1), C. ANICULAESEI (a1), B. ERSFELD (a1) and D. A. JAROSZYNSKI (a1)...


The Advanced Laser–Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme at the University of Strathclyde is developing laser–plasma accelerators for the production of ultra-short high quality electron bunches. Focussing such LWFA bunches into an undulator, for example, requires particular attention to be paid to the emittance, electron bunch duration and energy spread. On the ALPHA-X wakefield accelerator beam line, a high intensity ultra-short pulse from a 30 TW Ti:Sapphire laser is focussed into a helium gas jet to produce femtosecond duration electron bunches in the range of 90–220 MeV. Measurements of the electron energy spectrum, obtained using a high resolution magnetic dipole spectrometer, show electron bunch r.m.s. energy spreads down to 0.5%. A pepper-pot mask is used to obtain transverse emittance measurements of a 128 ± 3 MeV mono-energetic electron beam. An average normalized emittance of ϵrms,x,y = 2.2 ± 0.7, 2.3 ± 0.6 π-mm-mrad is measured, which is comparable to that of a conventional radio-frequency accelerator. The best measured emittance of ϵrms,x, = 1.1 ± 0.1 π-mm-mrad corresponds to the resolution limit of the detection system. 3D particle-in-cell simulations of the ALPHA-X accelerator partially replicate the generation of low emittance, low energy spread bunches with charge less than 4 pC and gas flow simulations indicate both long density ramps and shock formation in the gas jet nozzle.



Hide All
Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S. et al. 2003 GEANT4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A – Accel. Spectrom. Detect. Assoc. Equip. 506, 250303.
Browne, C. P. and Buechner, W. W. 1956 Broad-range magnetic spectrograph. Rev. Sci. Instrum. 27, 899907.
Brunetti, E., Shanks, R. P., Manahan, G. G., Islam, M. R., Ersfeld, B., Anania, M. P., Cipiccia, S., Issac, R. C., Raj, G. et al. 2010 Low emittance, high brilliance relativistic electron beams from a laser-plasma accelerator. Phys. Rev. Lett. 105, 215 007.
Carneiro, J. P., Carrigan, R. A., Champion, M. S., Colestock, P. L., Edwards, H. T., Fuerst, J. D., Hartung, W. H., Koepke, K. P., Kuchnir, M. et al. 1999 In Proc. Invited Papers, 18th Biennial Particle Accelerator Conference, Vol.3, (Eds. Luccio, A. and MacKay, W.). Institute of Electrical and Electronics Engineers, New York, 1999, New York City, pp. 20272029.
Cipiccia, S., Islam, M. R., Ersfeld, B., Shanks, R. P., Brunetti, E., Vieux, G., Yang, X., Issac, R. C., Wiggins, S. M. et al. 2011 Gamma-rays from harmonically resonant betatron oscillations in a plasma wake. Nat. Phys. 7, 867.
Eichner, T., Gruner, F., Becker, S., Fuchs, M., Habs, D., Weingartner, R., Schramm, U., Backe, H., Kunz, P. et al. 2007 Miniature magnetic devices for laser-based, table-top free-electron lasers. Phys. Rev. Spec. Topics – Accel. Beams 10, 9.
Faure, J., Rechatin, C., Norlin, A., Lifschitz, A., Glinec, Y. and Malka, V. 2006 Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737739.
Fonseca, R. A., Silva, L. O., Tsung, F. S., Decyk, V. K., Lu, W., Ren, C., Mori, W. B., Deng, S., Lee, S. et al. 2002 OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In: Proc. Comput. Sci.-Iccs 2002, Pt Iii, Vol. 2331 (ed. Sloot, P., Tan, C. J. K., Dongarra, J. J. and Hoekstra, A. G.). Berlin: Springer-Verlag Berlin, pp. 342351.
Fritzler, S., Lefebvre, E., Malka, V., Burgy, F., Dangor, A. E., Krushelnick, K., Mangles, S. P. D., Najmudin, Z., Rousseau, J. P. et al. 2004 Emittance measurements of a laser-wakefield-accelerated electron beam. Phys. Rev. Lett. 92, 4.
Fuchs, M., Weingartner, R., Popp, A., Major, Z., Becker, S., Osterhoff, J., Cortrie, I., Zeitler, B., Horlein, R. et al. 2009 Laser-driven soft-X-ray undulator source. Nat. Phys. 5, 826829.
Huntington, C. M., Thomas, A. G. R., McGuffey, C., Matsuoka, T., Chvykov, V., Kalintchenko, G., Kneip, S., Najmudin, Z., Palmer, C. et al. 2011 Current filamentation instability in laser wakefield accelerators. Phys. Rev. Lett. 106, 4.
Jaroszynski, D. A., Bingham, R., Brunetti, E., Ersfeld, B., Gallacher, J., van der Geer, B., Issac, R., Jamison, S. P., Jones, D. et al. 2006 Radiation sources based on laser-plasma interactions. Phil. Trans. R. Soc. A – Math. Phys. Eng. Sci. 364, 689710.
Leemans, W. P., Nagler, B., Gonsalves, A. J., Toth, C., Nakamura, K., Geddes, C. G. R., Esarey, E., Schroeder, C. B. and Hooker, S. M. 2006 GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696699.
Lu, W., Tzoufras, M., Joshi, C., Tsung, F. S., Mori, W. B., Vieira, J., Fonseca, R. A. and Silva, L. O. 2007 Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Topics – Accel. Beams 10, 12.
Lundh, O., Lim, J., Rechatin, C., Ammoura, L., Ben-Ismail, A., Davoine, X., Gallot, G., Goddet, J. P., Lefebvre, E. et al. 2011 Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator. Nat. Phys. 7, 219222.
Manahan, G. G., Brunetti, E., Shanks, R. P., Islam, M. R., Ersfeld, B., Anania, M. P., Cipiccia, S., Issac, R. C., Raj, G. et al. 2011 High resolution, single shot emittance measurement of relativistic electrons from laser-driven accelerator. In: Laser Acceleration of Electrons, Protons, and Ions and Medical Applications of Laser-Generated Secondary Sources of Radiation and Particles, Vol. 8079 (ed. Leemans, W. P., Esarey, E., Hooker, S. M., Ledingham, K. W. D., Spohr, K. and McKenna, P.). Bellingham: Spie-Int Soc Optical Engineering, p. 807 909.
Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Divall, E. J., Foster, P. S., Gallacher, J. G. et al. 2004 Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535538.
Paterson, I. J., Clarke, R. J., Woolsey, N. C. and Gregori, G. 2008 Image plate response for conditions relevant to laser – plasma interaction experiments. Meas. Sci. Technol. 19, 095 301.
Rechatin, C., Faure, J., Ben-Ismail, A., Lim, J., Fitour, R., Specka, A., Videau, H., Tafzi, A., Burgy, F. and Malka, V. (2009) Controlling the Phase-Space Volume of Injected Electrons in a Laser-Plasma Accelerator. Phys. Rev. Lett. 102, 4.
Reitsma, A. J. W., Cairns, R. A., Bingham, R. and Jaroszynski, D. A. 2005 Efficiency and energy spread in laser-wakefield acceleration. Phys. Rev. Lett. 94, 085 004.
Rousse, A., Phuoc, K. T., Shah, R., Pukhov, A., Lefebvre, E., Malka, V., Kiselev, S., Burgy, F., Rousseau, J. P. et al. 2004 Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. Phys. Rev. Lett. 93, 4.
Schlenvoigt, H. P., Haupt, K., Debus, A., Budde, F., Jackel, O., Pfotenhauer, S., Schwoerer, H., Rohwer, E., Gallacher, J. G. et al. 2008 A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator. Nat. Phys. 4, 130133.
Schmid, K. 2009 Supersonic Micro-Jets and Their Application to Few Cycle Laser Driven Electron Acceleration. München: LMU.
Sears, C. M. S., Buck, A., Schmid, K., Mikhailova, J., Krausz, F. and Veisz, L. 2010 Emittance and divergence of laser wakefield accelerated electrons. Phys. Rev. Spec. Topics – Accel. Beams 13, 092 803.
Sprangle, P., Esarey, E. and Ting, A. 1990 Nonlinear-interaction of intense laser-pulses in plasmas. Phys. Rev. A 41, 44634467.
Sun, G. Z., Ott, E., Lee, Y. C. and Guzdar, P. 1987 Self-focusing of short intense pulse in plasmas. Phys. Fluids 30, 526532.
Tajima, T. and Dawson, J. M. 1979 Laser electron-accelerator. Phys. Rev. Lett. 43, 267270.
van der Geer, S. B., Luiten, O. J., de Loos, M. J., Poplau, G. and van Rienen, U. 2005 3D space-charge model for GPT simulations of high-brightness electron bunches. In: Computational Accelerator Physics 2002, Vol. 175 (ed. Berz, M. and Makino, K.). Bristol: IOP Publishing Ltd, pp. 101110.
Wiggins, S. M., Anania, M. P., Brunetti, E., Cipiccia, S., Ersfeld, B., Islam, M. R., Issac, R. C., Raj, G., Shanks, R. P. et al. 2009 Narrow spread electron beams from a laser-plasma wakefield accelerator. In: Harnessing Relativistic Plasma Waves as Novel Radiation Sources from Terahertz to X-Rays and Beyond, Vol. 7359 (ed. Jaroszynski, D. A. and Rousse, A.) Bellingham: Spie-Int Soc Optical Engineering, pp. 735 914.
Wiggins, S. M., Issac, R. C., Welsh, G. H., Brunetti, E., Shanks, R. P., Anania, M. P., Cipiccia, S., Manahan, G. G., Aniculaesei, C. et al. 2010 High quality electron beams from a laser wakefield accelerator. Plasma Phys. Control. Fusion 52, 124 032.
Yamazaki, Y., Kurihara, T., Kobayashi, H., Sato, I. and Asami, A. 1992 High-precision pepper-pot technique for a low-emittance electron-beam. Nucl. Instrum. Methods Phys. Res. A – Accel. Spectrom. Detect. Assoc. Equip. 322, 139145.
MathJax is a JavaScript display engine for mathematics. For more information see

High resolution electron beam measurements on the ALPHA-X laser–plasma wakefield accelerator

  • G. H. WELSH (a1), S. M. WIGGINS (a1), R. C. ISSAC (a1), E. BRUNETTI (a1), G. G. MANAHAN (a1), M. R. ISLAM (a1), S. CIPICCIA (a1), C. ANICULAESEI (a1), B. ERSFELD (a1) and D. A. JAROSZYNSKI (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed