Skip to main content Accessibility help
×
Home

Experimental observation of hot tail runaway electron generation in TEXTOR disruptions

  • L. Zeng (a1), H. R. Koslowski (a2), Y. Liang (a2), A. Lvovskiy (a2), M. Lehnen (a3), D. Nicolai (a2), J. Pearson (a2), M. Rack (a2), P. Denner (a2), K. H. Finken (a4), K. Wongrach (a4) and the TEXTOR team...

Abstract

Experimental evidence supporting the theory of hot tail runaway electron (RE) generation has been identified in TEXTOR disruptions. With higher temperature, more REs are generated during the thermal quench. Increasing the RE generation by increasing the temperature, an obvious RE plateau is observed even with low toroidal magnetic field (1.7 T). These results explain the previously found electron density threshold for RE generation.

Copyright

Corresponding author

Email address for correspondence: zenglong@ipp.ac.cn

References

Hide All
Bozhenkov, S. A. et al. 2007 Main characteristics of the fast disruption mitigation valve. Rev. Sci. Instrum. 78, 033503.
Bozhenkov, S. A. et al. 2008 Generation and suppression of runaway electrons in disruption mitigation experiments in TEXTOR. Plasma Phys. Control. Fusion 50, 105007.
Chiu, S. C., Rosenbluth, M. N., Harvey, R. W. and Chan, V. S. 1998 Fokker–Planck simulations mylb of knock-on electron runaway avalanche and bursts in tokamaks. Nucl. Fusion 38, 1711.
Connor, J. W., Hastie, R. J. 1975 Relativistic limitations on runaway electrons. Nucl. Fusion 15, 415.
Dreicer, H. 1959 Electron and ion runaway in a fully ionized gas: I. Phys. Rev. 115, 238.
Dreicer, H. 1960 Electron and ion runaway in a fully ionized gas: II. Phys. Rev. 117, 329.
Féher, T. et al. 2011 Simulation of runaway electron generation during plasma shutdown by impurity injection in ITER. Plasma Phys. Control. Fusion 53, 035014.
Granetz, R. et al. 2015 An ITPA joint experiment to study runaway electron generation and suppression. Phys. Plasma 21, 072506.
Harvey, R. W. et al. 2000 Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model. Phys. Plasmas 7, 4590.
Helander, P., Smith, H., Fülop, T. and Eriksson, L. G. 2004 Electron kinetics in a cooling plasma. Phys. Plasmas 11, 5704.
Hender, T. C. et al. 2007 Progress in the ITER physics basis chapter 3: MHD stability, operational limits and disruptions. Nucl. Fusion 47, S128.
ITER Physics Basis Editors et al. 1999 ITER physics basis chapter 1: overview and summary. Nucl. Fusion 39, 2137.
James, A. N. 2011 Investigations of runaway electron generation, transport, and stability in the DIII-D tokamak. PhD thesis, University of California, San Diego, USA.
James, A. N. et al. 2012 Measurements of hard x-ray emission from runaway electrons in DIII-D. Nucl. Fusion 52, 013007.
Lehnen, M. et al. 2008 Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions. Phys. Rev. Lett. 100, 255003.
Lehnen, M. et al. 2009 Runaway generation during disruptions in JET and TEXTOR. J. Nucl. Mater. 390–391, 740.
Lehnen, M. et al. 2011 Disruption mitigation by massive gas injection in JET. Nucl. Fusion 51, 123010.
Lvovskiy, A. Koslowski, H. R. and Zeng, L. 2015 Suppression of the runaway electron generation by massive gas injection after induced disruptions on TEXTOR. Submitted to J. Plasma Phys.
Marmar, E. et al. 2009 Overview of the Alcator C-Mod research program. Nucl. Fusion 49, 104014.
Martin, G. 1998 Runaway electrons: from Tore-Supra to ITER. In: Proc. 25th European Physical Society Conf. on Plasma Physics, Prague, 1998, Vol. 22C. Prague, Czech Republic: European Physical Society, P3.006.
Pautasso, G. et al. 2007 Plasma shut-down with fast impurity puff on ASDEX Upgrade. Nucl. Fusion 47, 900.
Rosenbluth, M. N. and Putvinski, S. V. 1997 Theory for avalanche of runaway electrons in tokamaks. Nucl. Fusion 37, 1355.
Smith, H., Helander, P., Eriksson, L. G. and Fülop, T. 2005 Runaway electron generation in a cooling plasma. Phys. Plasmas 12, 122505.
Smith, H. and Verwichte, E. 2008 Hot tail runaway electron generation in tokamak disruptions. Phys. Plasmas 15, 072502.
Thornton, A. J. et al. 2012 Plasma profile evolution during disruption mitigation via massive gas injection on MAST. Nucl. Fusion 52, 063018.
Yoshino, R. 1995 Avoidance and softening of disruptions by control of plasma-surface interaction. J. Nucl. Mater. 220–222, 132.
Yoshino, R., Tokuda, S. and Kawano, Y. 1999 Generation and termination of runaway electrons at major disruptions in JT-60U. Nucl. Fusion 39, 151.
Zeng, L. et al. 2013 Experimental observation of a magnetic-turbulence threshold for runaway-electron generation in the TEXTOR tokamak. Phys. Rev. Lett. 110, 235003.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Experimental observation of hot tail runaway electron generation in TEXTOR disruptions

  • L. Zeng (a1), H. R. Koslowski (a2), Y. Liang (a2), A. Lvovskiy (a2), M. Lehnen (a3), D. Nicolai (a2), J. Pearson (a2), M. Rack (a2), P. Denner (a2), K. H. Finken (a4), K. Wongrach (a4) and the TEXTOR team...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed