Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T22:45:11.219Z Has data issue: false hasContentIssue false

Experimental issues of energy balance in open magnetic trap

Published online by Cambridge University Press:  14 March 2024

Elena I. Soldatkina*
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia Novosibirsk State University, Novosibirsk 630090, Russia
Andrey K. Meyster
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
Dmitry V. Yakovlev
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
Peter A. Bagryansky
Affiliation:
Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
*
Email address for correspondence: e.i.soldatkina@inp.nsk.su

Abstract

The paper presents an overview of experimental results of an investigation of different energy loss channels in the gas dynamic trap (GDT), which is a magnetic mirror plasma confinement device in the Budker Institute of Nuclear Physics. Energy losses along magnetic field lines are considered as well as losses onto radial limiters, which restrict the plasma column radius and provide its magnetohydrodynamic stability via the ‘vortex confinement’ mechanism. The losses along the field lines were measured using a set of pyroelectric bolometers on the plasma absorber and the losses onto the limiters were determined with thermistors from their temperature rise. Additionally, the losses due to charge exchange of fast plasma ions on the residual neutral gas in the GDT were measured using a longitudinal array of pyroelectric bolometers mounted on the wall of the central cell. An attempt was made to draw up the energy balance in the GDT in order to identify the predominant loss channels and reduce those losses in the future.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bagryansky, P.A., Beklemishev, A.D. & Soldatkina, E.I. 2007 Influence of radial electric field on high-beta plasma confinement in the gas dynamic trap. Fusion Sci. Technol. 51 (2T), 340342.CrossRefGoogle Scholar
Bagryansky, P.A., Bender, E.D., Ivanov, A.A., Karpushov, A.N., Murachtin, S.V., Noack, K., Krahl, S. & Collatz, S. 1999 Effect of fast ti-deposition on gas recycling at the first wall and on fast ion losses in the GDT experiment. J. Nucl. Mater. 265 (1–2), 124133.CrossRefGoogle Scholar
Bagryansky, P.A., Shalashov, A.G., Gospodchikov, E.D., Lizunov, A.A., Maximov, V.V., Prikhodko, V.V., Soldatkina, E.I., Solomakhin, A.L. & Yakovlev, D.V. 2015 Threefold increase of the bulk electron temperature of plasma discharges in a magnetic mirror device. Phys. Rev. Lett. 114 (20), 205001.CrossRefGoogle Scholar
Beklemishev, A.D., Bagryansky, P.A., Chaschin, M.S. & Soldatkina, E.I. 2010 Vortex confinement of plasmas in symmetric mirror traps. Fusion Sci. Technol. 57 (4), 351360.CrossRefGoogle Scholar
Deichuli, P.P., Davydenko, V.I., Ivanov, A.A., Korepanov, S.A., Mishagin, V.V., Sorokin, A.V., Stupishin, N.V. & Shulzhenko, G.I. 2004 High power hydrogen neutral beam injector with focusing for plasma heating. Rev. Sci. Instrum. 75 (5), 18161818.CrossRefGoogle Scholar
Ivanov, A.A., Beklemishev, A.D., Kruglyakov, E.P., Bagryansky, P.A., Lizunov, A.A., Maximov, V.V., Murakhtin, S. & Prikhodko, V.V. 2010 Results of recent experiments on GDT device after upgrade of heating neutral beams. Fusion Sci. Technol. 57 (4), 320325.CrossRefGoogle Scholar
Ivanov, A.A. & Prikhodko, V.V. 2013 Gas-dynamic trap: an overview of the concept and experimental results. Plasma Phys. Control. Fusion 55 (6), 063001.CrossRefGoogle Scholar
Ivanov, A.A. & Ryutov, D.D. 1990 Mirror-based neutron sources for fusion technology studies. Nucl. Sci. Engng 106 (3), 235242.CrossRefGoogle Scholar
Marshall, J. 1960 Performance of a hydromagnetic plasma gun. Phys. Fluids 3 (1), 134135.CrossRefGoogle Scholar
Mirnov, V.V & Ryutov, D.D. 1988 Gas dynamic trap. Res. Sci. Technol. Plasma Phys. 8, 77130.Google Scholar
Ryutov, D.D. 2005 Axial electron heat loss from mirror devices revisited. Fusion Sci. Technol. 47 (1T), 148154.CrossRefGoogle Scholar
Simonen, T.C. 2016 Three game changing discoveries: a simpler fusion concept? J. Fusion Energy 35, 6368.CrossRefGoogle Scholar
Simonen, T.C., Anikeev, A., Bagryansky, P., Beklemishev, A., Ivanov, A., Lizunov, A., Maximov, V., Prikhodko, V. & Tsidulko, Y. 2010 High beta experiments in the GDT axisymmetric magnetic mirror. J. Fusion Energy 29 (6), 558560.CrossRefGoogle Scholar
Skovorodin, D.I. 2019 Suppression of secondary emission of electrons from end plate in expander of open trap. Phys. Plasmas 26 (1), 012503.CrossRefGoogle Scholar
Skovorodin, D.I. & Beklemishev, A.D. 2016 Potential profile in expander of mirror trap. AIP Conf. Proc. 1771 (1), 030029.CrossRefGoogle Scholar
Soldatkina, E.I., Maximov, V.V., Prikhodko, V.V., Savkin, V.Y., Skovorodin, D.I., Yakovlev, D.V. & Bagryansky, P.A. 2020 Measurements of axial energy loss from magnetic mirror trap. Nucl. Fusion 60 (8), 086009.CrossRefGoogle Scholar
Yurov, D.V., Prikhodko, V.V. & Tsidulko, Y.A. 2016 Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma. Plasma Phys. Rep. 42 (3), 210225.CrossRefGoogle Scholar