Skip to main content Accessibility help

Experimental and computational characterization of hydrodynamic expansion of a preformed plasma from thin-foil target for laser-driven proton acceleration



We characterize the electron density distributions of preformed plasma for laser-accelerated proton generation. The preformed plasma of a titanium target 3 μm thick is generated by prepulse and amplified spontaneous emission (ASE) of a high-intensity Ti:sapphire laser and is measured with an interferometer using a second harmonic probe beam. High-energy protons are obtained by reducing the size of the preformed plasma by changing the ASE duration before main pulse at the front side (laser incidence side) of the target. Simulation results with two-dimensional radiation hydrodynamic code are close to the experimental results for low-density region ~4 × 1019 cm−3 at the front side. In the high-density region near to the target surface, the interferometry underestimates the density due to the substantial refraction. The characterization of hydrodynamic expansion with the interferometer and simulation is a useful tool for investigation of high-energy proton generation.



Hide All
[1]Santala, M. I. K. et al. 2000 Effect of the plasma density scale length on the direction of fast electrons in relativistic laser-solid interactions. Phys. Rev. Lett. 84, 14591462.
[2]Giulietti, D. et al. 2002 Production of ultracollimated bunches of multi-MeV electrons by 35 fs laser pulses propagating in exploding-foil plasmas. Phys. Plasmas 9, 36553658.
[3]Borghesi, M., Fuchs, J., Bulanov, S. V., Mackinnon, A. J., Patel, P. K. and Roth, M. 2006 Fast ion generation by high-intensity laser irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412439.
[4]Nishiuchi, M. et al. 2008 Efficient production of a collimated MeV proton beam from a polyimide target driven by an intense femtosecond laser pulse. Phys. Plasmas 15, 053104.
[5]Bastiani, S., Rousse, A., Geindre, J. P., Audebert, P., Quoix, C., Hamoniaux, G., Antonetti, A. and Gauthier, J.-C. 1997 Experimental study of the interaction of subpicosecond laser pulses with solid targets of varying initial scale lengths. Phys. Rev. E 56, 71797185.
[6]Hamster, H., Sullivan, A., Gordon, S., White, W. and Falcone, R. W. 1993 Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Phys. Rev. Lett. 71, 27252728.
[7]Hamster, H., Sullivan, A., Gordon, S. and Falcone, R. W. 1994 Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Phys. Rev. E 49, 671677.
[8]Tilborg, J. van et al. 2006 Temporal characterization of femtosecond laser-plasma-accelerated electron bunches using terahertz radiation. Phys. Rev. Lett. 96, 014801.
[9]Sagisaka, A. et al. 2008 Simultaneous generation of a proton beam and terahertz radiation in high-intensity laser and thin-foil interaction. Appl. Phys. B 90, 373377.
[10]Mackinnon, A. J. et al. 2001 Effect of plasma scale length on multi-MeV proton production by intense laser pulses. Phys. Rev. Lett. 86, 17691772.
[11]Roth, M. et al. 2002 Energetic ions generated by laser pulses: a detailed study on target properties. Phys. Rev. ST Accel. Beams 5, 061301.
[12]Matsukado, K. et al. 2003 Energetic protons from a few-micron metallic foil evaporated by an intense laser pulse. Phys. Rev. Lett. 91, 215001.
[13]Kaluza, M., Schreiber, J., Santala, M. I. K., Tsakiris, G. D., Eidmann, K., Meyer-ter-Vehn, J. and Witte, K. J. 2004 Influence of the laser prepulse on proton acceleration in thin-foil experiments. Phys. Rev. Lett. 93, 045003.
[14]Wang, X., Nemoto, K., Nayuki, T., Oishi, Y. and Eidmann, K. 2005 Effect of plasma peak density on energetic proton emission in ultrashort high-intensity laser-foil interactions. Phys. Plasmas 12, 113101.
[15]Lindau, F., Lundh, O., Persson, A., McKenna, P., Osvay, K., Batani, D. and Wahlström, C.-G. 2005 Laser-accelerated protons with energy-dependent beam direction. Phys. Rev. Lett. 95, 175002.
[16]Yogo, A. et al. 2008 Laser ion acceleration via control of the near-critical density target. Phys. Rev. E 77, 016401.
[17]Gizzi, L. A. et al. 1994 Characterization of laser plasmas for interaction studies. Phys. Rev. E 49, 56285643.
[18]Borghesi, M., Giulietti, A., Giulietti, D., Gizzi, L. A., Macchi, A. and Willi, O. 1996 Characterization of laser plasmas for interaction studies: progress in time-resolved density mapping. Phys. Rev. E 54, 67696773.
[19]Tommasini, R., Eidmann, K., Kawachi, T. and Fill, E. E. 2004 Preplasma conditions for operation of 10-Hz subjoule femtosecond-laser-pumped nickel-like x-ray lasers. Phys. Rev. E 69, 066404.
[20]Rus, B. et al. 1997 Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers. Phys. Rev. A 56, 42294241.
[21]Sagisaka, A. et al. 2004 Characterization of preformed plasmas with an interferometer for ultra-short high-intensity laser-plasma interactions. Appl. Phys. B 78, 919922.
[22]Sagisaka, A. et al. 2006 Development of a two-color interferometer for observing wide range electron density profiles with a femtosecond time resolution. Appl. Phys. B 84, 415419.
[23]Mori, M. et al. 2006 Development of beam-pointing stabilizer on a 10-TW Ti:Al2O3 laser system JLITE-X for laser-excited ion accelerator research. Laser Phys. 16, 10921096.
[24]Fukumi, A. et al. 2005 Laser polarization dependence of proton emission from a thin foil target irradiated by a 70 fs, intense laser pulse. Phys. Plasmas 12, 100701.
[25]Nakamura, S. et al. 2006 Real-time optimization of proton production by intense short-pulse laser with time-of-flight measurement. Jpn. J. Appl. Phys. 45, L913L916.
[26]Yogo, A. et al. 2007 Laser prepulse dependency of proton-energy distributions in ultraintense laser-foil interactions with an online time-of-flight technique. Phys. Plasmas 14, 043104.
[27]Ragozin, E. N. et al. 2006 Extreme ultraviolet diagnostics of preformed plasma in laser-driven proton acceleration experiments. Rev. Sci. Instrum. 77, 123302.
[28]Nagatomo, H., Johzaki, T., Nakamura, T., Sakagami, H., Sunahara, A. and Mima, K. 2007 Simulation and design study of cryogenic cone shell target for fast ignition realization experiment project. Phys. Plasmas 14, 056303.
[29]Yabe, T., Xiao, F. and Utsumi, T. 2001 The constrained interpolation profile method for multiphase analysis. J. Comp. Phys. 169, 556593.
[30]More, R. M., Warren, K. H., Young, D. A. and Zimmerman, G. B. 1988 A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 30593078.
[31]Takami, K. and Takabe, H., 1990 Simple fitting formulas of equation of state for laser produced plasmas. Tech. Rep of Osaka Univ. 40, Vol. 2005, 159–173, Osaka Univ.
[32]Nishiuchi, M. et al. 2006 The laser proton acceleration in the strong charge separation régime. Phys. Lett. A 357, 339344.
MathJax is a JavaScript display engine for mathematics. For more information see

Experimental and computational characterization of hydrodynamic expansion of a preformed plasma from thin-foil target for laser-driven proton acceleration



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed