Skip to main content Accessibility help

Electron skin depth in low density plasmas

  • F. E. M. Silveira (a1) and B. P. Siqueira (a1)


We rescale the generalized Ohm’s law and consider the limits that imply the electric field which moves with an ideal (inviscid and perfectly conducting) plasma be proportional to the time rate of change of the current density. Therefore, we show that those limits are satisfied by a sufficiently low electron number density, $n_{\text{e}}$ . We also show that the electron–ion collision frequency, $\unicode[STIX]{x1D708}_{\text{ei}}$ , is much smaller than the ion cyclotron frequency, $\unicode[STIX]{x1D714}_{\text{ci}}$ . The combination of that condition with the Lawson criterion for a typical deuterium–tritium fusion in ITER reveals a lower bound for the geometric mean of the confinement time, $\unicode[STIX]{x1D70F}_{\text{C}}$ , and collision interval, $\sqrt{\unicode[STIX]{x1D70F}_{\text{C}}/\unicode[STIX]{x1D708}_{\text{ei}}}\gg 10^{-5}~\text{s}$ . For that reaction, we estimate that $n_{\text{e}}\sim 10^{19}~\text{m}^{-3}$ , and contrast typical parameters of our fully ionized gas with those of warm, hot and thermonuclear plasmas. When, in addition, $n_{\text{e}}$ varies slowly in time and weakly in space, we generalize Alfvén’s theorem, by showing that the frozen-in condition holds true for an effective magnetic field, which depends on a finite electron skin depth. We perform a (divergenceless) helical perturbation on an axisymmetric equilibrium, to derive a dispersion relation in the cylindrical tokamak limit, and, subsequently, apply our analytical formulation to the peaked model, which assumes a logarithmic derivative profile for the poloidal component of the equilibrium magnetic field. In that formulation, the definition of the safety factor in terms of the effective field yields a shift in the magnetic surfaces. We find that the instability peak may triple that predicted on neglect of a finite electron mass. We also find that inertial effects may centuple the radius of the stable cylindrical column.


Corresponding author

Email address for correspondence:


Hide All
Alfvén, H. 1942a On the existence of electromagnetic-hydrodynamic waves. Arkiv för matematik, astronomi och fysik 29, B1.
Alfvén, H. 1942b Existence of electromagnetic-hydrodynamic waves. Nature 150, 405.
Bellan, P. M. 2000 Spheromaks: A Practical Application of Magnetohydrodynamic Dynamos and Plasma Self-organization. Imperial College Press.
Bellan, P. M. 2012 Fundamentals of Plasma Physics. Cambridge University Press.
Bennett, A. 2006 Lagrangian Fluid Dynamics. Cambridge University Press.
Bernstein, I. B., Frieman, E. A., Kruskal, M. D. & Kulsrud, R. M. 1958 An energy principle for hydromagnetic stability problems. Proc. R. Soc. Lond. A 244, 17.
Bittencourt, J. A. 2004 Fundamentals of Plasma Physics, 3rd edn.Springer.
Bonanomi, N., Mantica, P., Szepesi, G., Hawkes, N., Lerche, E., Migliano, P., Peeters, A., Sozzi, C., Tsalas, M., Van Eester, D.& Jet Contributors 2015 Trapped electron mode driven electron heat transport in JET: experimental investigation and gyro-kinetic theory validation. Nucl. Fusion 55, 113016.
Buneman, O. 1958 Instability, turbulence, and conductivity in current-carrying plasma. Phys. Rev. Lett. 1, 8.
Buneman, O. 1963 Excitation of field aligned sound waves by electron streams. Phys. Rev. Lett. 10, 285.
Bustos, A., Castejón, F., Fernández, L. A., García, J., Martin-Mayor, V., Reynolds, J. M., Seki, R. & Velasco, J. L. 2010 Impact of 3D features on ion collisional transport in ITER. Nucl. Fusion 50, 125007.
Chatziantonaki, I., Tsironis, C. H., Isliker, H. & Vlahos, L. 2013 Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive. Plasma Phys. Control. Fusion 55, 115012.
Cohen, R. S., Spitzer, L. & Routly, P. M. C. R. 1950 The electrical conductivity of an ionized gas. Phys. Rev. 80, 230.
Ďuran, I., Entler, S., Grover, O., Bolshakova, I., Výborný, K., Kolčan, M., Jirman, T., Vayakis, G., Vasyliev, O., Radishevskyi, M. et al. 2019 Status of steady-state magnetic diagnostic for ITER and outlook for possible materials of Hall sensors for DEMO. Fusion Engng Des. 146, 2397.
Farley, D. T. 1963 Two-stream plasma instability as a source of irregularities in the ionosphere. Phys. Rev. Lett. 10, 279.
Freidberg, J. P. 2014 Ideal MHD. Cambridge University Press.
Furth, H. P., Killeen, J. & Rosenbluth, M. N. 1963 Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459.
Furth, H. P., Rutherford, P. H. & Selberg, H. 1973 Tearing mode in the cylindrical tokamak. Phys. Fluids 16, 1054.
Gambetta, G., Agostinetti, P., Sonato, P., Fedele, L., Bobbo, S. & Cabaleiro, D. 2019 Numerical analyses and tests for optimized and enhanced heat transfer solutions in DEMO. Fusion Engng Des. 146, 2692.
Goedbloed, J. P. 1973 Generalization of Suydam’s criterion. Phys. Fluids 16, 1927.
Gupta, S., Callen, J. D. & Hegna, C. C. 2002 Violating Suydam criterion produces feeble instabilities. Phys. Plasmas 9, 3395.
Horton, W., Kim, J.-H., Asp, E., Hoang, T., Watanabe, T.-H. & Sugama, H. 2008 Drift wave turbulence. AIP Conf. Proc. 1013, 1.
Horvath, A. & Rachlew, E. 2016 Nuclear power in the 21st century: challenges and possibilities. Ambio 45 (1), S38.
ITER Physics Basis Editors et al. 1999a Chapter 1: overview and summary. Nucl. Fusion 39, 2137.
ITER Physics Expert Group on Confinement and Transport et al. 1999b Chapter 2: plasma confinement and transport. Nucl. Fusion 39, 2175.
Jorge, R., Ricci, P. & Loureiro, N. F. 2017 A drift-kinetic analytical model for scrape-off layer plasma dynamics at arbitrary collisionality. J. Plasma Phys. 83, 905830606.
Jorge, R., Ricci, P. & Loureiro, N. F. 2018 Theory of the drift-wave instability at arbitrary collisionality. Phys. Rev. Lett. 121, 165001.
Jorge, R., Ricci, P., Brunner, S., Gamba, S., Konovets, V., Loureiro, N. F., Perrone, L. M. & Teixeira, N. 2019 Linear theory of electron-plasma waves at arbitrary collisionality. J. Plasma Phys. 85, 905850211.
Kadomtsev, B. 1966 Hydromagnetic stability of a plasma. Rev. Plasma Phys. 2, 153.
Klimontovich, Yu. L. 1967 The Statistical Theory of Non-equilibrium Processes in a Plasma. Pergamon.
Lawson, J. D.1955 Some criteria for a useful thermonuclear reaction. Tech. Rep., Atomic Energy Research Establishment, Harwell, Berkshire: UK.
Lawson, J. D. 1957 Some criteria for a power producing thermonuclear reactor. Proc. Phys. Soc. B 70, 6.
Lundquist, S. 1952 Studies in magneto-hydrodynamics. Arkiv Mat. Astr. Fys. 5, 297.
Miyamoto, K. 2016 Plasma Physics for Controlled Fusion, 2nd edn.Springer.
Moseev, D., Salewski, M., Garcia-Muñoz, M., Geiger, B. & Nocente, M. 2018 Recent progress in fast-ion diagnostics for magnetically confined plasmas. Rev. Mod. Plasma Phys. 2, 7.
Nishikawa, K. & Wakatani, M. 2000 Plasma Physics: Basic Theory with Fusion Applications, 3rd edn.Springer.
Ongena, J., Koch, R., Wolf, R. & Zohm, H. 2016 Magnetic-confinement fusion. Nat. Phys. 12, 398.
Park, H. K. 2019 Newly uncovered physics of MHD instabilities using 2-D electron cyclotron emission imaging system in toroidal plasmas. Adv. Phys. X 4, 1633956.
Piel, A. 2017 Plasma Physics: An Introduction to Laboratory, Space, and Fusion Plasmas, 2nd edn.Springer.
Pogutse, O. P. 1968 Magnetic drift instability in a collisionless plasma. Plasma Phys. 10, 649.
Prǎvǎlie, R. & Bandoc, G. 2018 Nuclear energy: between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications. J. Environ. Manage. 209, 81.
Pushkarev, A., Bos, W. J. T. & Nazarenko, S. 2013 Zonal flow generation and its feedback on turbulence production in drift wave turbulence. Phys. Plasmas 20, 042304.
Richardson, A. S. 2019 Naval Research Laboratory Plasma Formulary. The Office of Naval Research.
Rutherford, P. H. 1968 Drift instabilities in general magnetic field configurations. Phys. Fluids 11, 569.
Silveira, F. E. M. & Orlandi, H. I. 2016 Rayleigh–Taylor instability with finite current relaxation. Phys. Plasmas 23, 042111.
Silveira, F. E. M. & Orlandi, H. I. 2017 Viscous-resistive layer in Rayleigh–Taylor instability. Phys. Plasmas 24, 032112.
Somov, B. V. 2013 Plasma Astrophysics, Part I: Fundamentals and Practice, 2nd edn.Springer.
Spitzer, L. 1958 The stellarator concept. Phys. Fluids 1, 253.
Spitzer, L. 2006 Physics of Fully Ionized Gases, 2nd edn.Dover.
Spitzer, L. & Härm, R. 1953 Transport phenomena in a completely ionized gas. Phys. Rev. 89, 977.
Strauss, H., Joffrin, E., Riccardo, V., Breslau, J., Paccagnella, R.& Jet Contributors 2017 Comparison of JET AVDE disruption data with M3D simulations and implications for ITER. Phys. Plasmas 24, 102512.
Suydam, B. R. 1958 Stability of a linear pinch. In Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy, vol. 31, p. 157. United Nations.
Sykes, A., Akers, R., Appel, L., Carolan, P. G., Conway, N. J., Cox, M., Field, A. R., Gates, D. A., Gee, S., Gryaznevich, M. et al. 1997 High-$\unicode[STIX]{x1D6FD}$ performance of the START spherical tokamak. Plasma Phys. Control. Fusion 39, B247.
Wagner, F. 2013 Physics of magnetic confinement fusion. EPJ Web Conf. 54, 01007.
Webb, G. 2018 Manetohydrodynamics and Fluid Dynamics: Action Principles and Conservation Laws. Springer.
Wesson, J. 2004 Tokamaks, 3rd edn.Oxford Science Publications.
White, R. B. 2014 The Theory of Toroidally Confined Plasmas, 3rd edn.Imperial College Press.
Zhao, L. & Diamond, P. H. 2012 Collisionless inter-species energy transfer and turbulent heating in driftwave turbulence. Phys. Plasmas 19, 082309.
MathJax is a JavaScript display engine for mathematics. For more information see


Electron skin depth in low density plasmas

  • F. E. M. Silveira (a1) and B. P. Siqueira (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed