Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-26T07:02:29.040Z Has data issue: false hasContentIssue false

Effects of polarization force and fast electrons on DA shock waves in a strongly coupled dusty plasma

Published online by Cambridge University Press:  21 August 2012

S. PERVIN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh (shadab22@yahoo.com)
S. S. DUHA
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh (shadab22@yahoo.com)
M. ASADUZZAMAN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh (shadab22@yahoo.com)
A. A. MAMUN
Affiliation:
Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh (shadab22@yahoo.com)

Abstract

A strongly coupled dusty plasma system consisting of non-thermal electrons, Maxwellian ions, and negatively charged dust in presence of polarization force has been considered. The nonlinear propagation of dust-acoustic shock waves in such a dusty plasma system has been theoretically investigated by employing the reductive perturbation method. The effects of the polarization force and non-thermal electrons, on the properties of these dust-acoustic shock waves are briefly discussed. It is shown that the strong correlation among the charged dust grains is a source of dissipation, and is responsible for the formation of the dust-acoustic shock waves. It has been found that the effects of polarization force and non-thermal electrons significantly modify the basic features of such shock waves. It has been proposed to design a new laboratory experiment, which will be able to identify the basic features of the dust-acoustic shock waves predicted in this present investigation.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alinejad, H. and Mamun, A. A. 2011 Phys. Plasmas 18, 073706.CrossRefGoogle Scholar
Anowar, M. G. M., Rahman, M. S. and Mamun, A. A. 2009 Phys. Plasmas 16, 053704.CrossRefGoogle Scholar
Asbridge, J. R., Bame, S. J. and Strong, I. B. 1968 J. Geophys. Res. 73, 5777.CrossRefGoogle Scholar
Ashrafi, K. S., Mamun, A. A. and Shukla, P. K. 2010 Europhys. Lett. 92, 15004.CrossRefGoogle Scholar
Bandyopadhyay, P., Prasad, G., Sen, A. and Kaw, P. K. 2008 Phys. Rev. Lett. 101, 065006.CrossRefGoogle Scholar
Barkan, A., Merlino, R. L. and Angelo, N. D. 1995 Phys. Plasmas 2, 3563.CrossRefGoogle Scholar
Berkovsky, M. A. 1992 Phys. Lett. A 166, 365.CrossRefGoogle Scholar
Boström, R. 1992 IEEE Trans. Plasma Sci. 20, 756.CrossRefGoogle Scholar
Boström, R., Gustafsson, G., Holback, B., Holmgren, G., Koskinen, H. and Kintner, P. 1988 Phys. Rev. Lett. 61, 82.CrossRefGoogle Scholar
Cairns, R. A., Mamun, A. A., Bingham, R., Boström, R., Dendy, R. O., Nairn, C. M. C. and Shukla, P. K. 1995 Geophys. Res. Lett. 22, 2709.CrossRefGoogle Scholar
Dovner, P. O., Eriksson, A. I., Boström, R. and Holback, B. 1994 Geophys. Res. Lett. 21, 1827.CrossRefGoogle Scholar
Feldman, W. C., Anderson, R. C., Bame, S. J., Gary, S. P., Gosling, J. T., McComas, D. J., Thomsen, M. F., Paschmann, G. and Hoppe, M. M. 1983 J. Geophys. Res. 88, 96.CrossRefGoogle Scholar
Futaana, Y., Machida, S., Saito, Y., Matsuoka, A. and Hayakawa, H. 2003 J. Geophys. Res. 108, 1025.CrossRefGoogle Scholar
Gozadinos, G., Ivlev, A. V. and Boef, J. P. 2003 New J. Phys. 5, 32.CrossRefGoogle Scholar
Hamaguchi, S. and Farouki, R. T. 1994a Phys. Rev. E 49, 4430.CrossRefGoogle Scholar
Hamaguchi, S. and Farouki, R. T. 1994b Phys. Plasmas 1, 2110.CrossRefGoogle Scholar
Heinrich, J., Kim, S. H. and Merlino, R. L. 2009 Phys. Rev. Lett. 103, 115002.CrossRefGoogle Scholar
Ichimaru, S., Iyetomi, H. and Tanaka, S. 1987 Phys. Rep. 149, 91.CrossRefGoogle Scholar
Kaw, P. K. and Sen, A. 1998 Phys. Plasmas 5, 3552.CrossRefGoogle Scholar
Khrapak, S. A., Ivlev, A. V., Yaroshenko, V. V. and Morfill, G. E. 2009 Phys. Rev. Lett. 102, 245004.CrossRefGoogle Scholar
Lundin, R., Eliasson, L., Hultqvist, B. and Stasiewicz, K. 1987 Geophys. Res. Lett. 14, 443.CrossRefGoogle Scholar
Lundin, R., Zakharov, A., Pellinen, R., Borg, H., Hultqvist, B., Pissarenko, N., Dubinin, E. M., Barabash, S. W., Liede, I. and Koskinen, H. 1989 Nature 341, 609.CrossRefGoogle Scholar
Mamun, A. A. and Cairns, R. A. 2009 Phys. Rev. E 79, 055401(R).CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2009a New J. Phys. 11, 103022.CrossRefGoogle Scholar
Mamun, A. A. and Shukla, P. K. 2009b Europhys. Lett. 87, 55001.CrossRefGoogle Scholar
Mamun, A. A., Cairns, R. A. and Shukla, P. K. 1996 Phys. Plasmas 3, 2610.CrossRefGoogle Scholar
Mamun, A. A., Shukla, P. K. and Farid, T. 2000 Phys. Plasmas 7, 2329.CrossRefGoogle Scholar
Mamun, A. A., Eliasson, B. and Shukla, P. K. 2004 Phys. Lett. A 332, 412.CrossRefGoogle Scholar
Mamun, A. A., Ashrafi, K. S. and Shukla, P. K. 2010 Phys. Rev. E 82, 026405.CrossRefGoogle Scholar
Pakzad, H. R. 2010 Astrophys. Space Sci. 330, 301.CrossRefGoogle Scholar
Prajapatia, R. P. 2011 Phys. Lett. A 375, 2624.CrossRefGoogle Scholar
Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543549.CrossRefGoogle Scholar
Shukla, P. K. and Eliasson, B. 2009 Rev. Mod. Phys. 81, 23.CrossRefGoogle Scholar
Shukla, P. K. and Mamun, A. A. 2001 IEEE Trans. Plasma Sci. 29, 221.CrossRefGoogle Scholar
Shukla, N. and Shukla, P. K. 2010 J. Plasma Phys. 76, 677.CrossRefGoogle Scholar
Shukla, P. K. 2005 Phys. Plasmas 12 084502.CrossRefGoogle Scholar
Slattery, W. L.Doolen, G. D. and DeWitt, H. E. 1980 Phys. Rev. A 21, 2087.CrossRefGoogle Scholar
Verheest, F. 2009 Phys. Plasmas 16, 013704.CrossRefGoogle Scholar
Washimi, H. and Taniuti, T. 1966 Phys. Rev. Lett. 17, 996 (1966).CrossRefGoogle Scholar