Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-21T15:36:39.530Z Has data issue: false hasContentIssue false

Effect of laser ripple on the beat wave excitation and particle acceleration

Published online by Cambridge University Press:  01 February 2007

P. K. CHAUHAN
Affiliation:
Center for Energy Studies, Indian Institute of Technology, New Delhi-110016, India (rpsharma@ces.iitd.ernet.in)
S. T. MAHMOUD
Affiliation:
Physics Department, UAE University, PO Box 17551, Al-Ain, United Arab Emirates
R. P. SHARMA
Affiliation:
Center for Energy Studies, Indian Institute of Technology, New Delhi-110016, India (rpsharma@ces.iitd.ernet.in)
H. D. PANDEY
Affiliation:
Center for Energy Studies, Indian Institute of Technology, New Delhi-110016, India (rpsharma@ces.iitd.ernet.in)

Abstract.

This paper presents the effect of ripple on the plasma wave excitation process and acceleration of electrons in a laser produced plasma. The plasma wave is generated by the beating of two coaxial lasers of frequencies ω1 and ω2, such that ω12≅ωp. One of the main laser beams also has intensity spikes. The nonlinearity due to the relativistic mass variation depends not only on the intensity of one laser beam but also on the second laser beam. Therefore the behavior of the first laser beam affects the second laser beam, hence cross-focusing takes place. Owing to the interaction of ripple and the main laser beams, the ripple grows inside the plasma. The behavior of the ripple in the plasma affects the excitation of the electron plasma wave as well as the electron acceleration. The amplitude of the electron plasma wave and the electron energy are calculated, in the presence of ripple.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wyrtele, J. S. 1993 Advanced Accelerator Concepts. New York: AIP.Google Scholar
[2] Joshi, C., Mori, W. B., Katsouleas, T., Dawson, J. M., Kindel, J. M. and Forslund, D. W. 1984 Nature 311, 525.CrossRefGoogle Scholar
[3] Amiranoff, F., Bernard, D., Cros, B., Jacquet, F., Matthieussent, G., Miné, P., Mora, P., Morillo, J., Moulin, F., Specka, A. E. and Stenz, C. 1995 Phys. Rev. Lett. 74, 5220.CrossRefGoogle Scholar
[4] Gahn, C., Tsakiris, G. D., Pukhov, A., Meyer-ter-Vehn, J., Pretzler, G., Thirolf, P., Habs, D. and Witte, K. J. 1999 Phys. Rev. Lett. 83, 4772.CrossRefGoogle Scholar
[5] Lin, H., Zhizhan, X., Li, R. and Chen, M. 2004 Phys. Plasmas 11 (11), 51675172.CrossRefGoogle Scholar
[6] Singh, K. P. 2004 Phys. Plasmas 11 (3), 11641167.CrossRefGoogle Scholar
[7] Kupersztych, J., Raynaud, M. and Riconda, C. 2004 Phys. Plasmas 11 (4), 16691673.CrossRefGoogle Scholar
[8] Liu, C. S. and Tripathi, V. K. 2005 Phys. Plasmas 12, 034103-1034103-8.Google Scholar
[9] Umstadter, D., Chen, S.-Y., Maksimchuk, A., Mourou, G. and Wagner, R. 1996 Science 273, 472.CrossRefGoogle Scholar
[10] Esarey, E., Sprangle, P., Krall, J. and Ting, A. 1996 IEEE Trans. Plasma Sci. 24, 252.CrossRefGoogle Scholar
[11] Tajima, T. and Dawson, J. M. 1979 Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
[12] Katsouleas, T. and Dawson, J. M. 1983 Phys. Rev. Lett. 51, 392.CrossRefGoogle Scholar
[13] Forslund, D. W. and Kindel, J. M. 1985 Phys. Rev. Lett. 54, 558.CrossRefGoogle Scholar
[14] Darrow, C., Umstadter, D., Katsouleas, T., Mori, W. B., Clayton, C. E. and Joshi, C. 1986 Phys. Rev. Lett. 56, 2629.CrossRefGoogle Scholar
[15] Kitagawa, Y. et al. 1992 Phys. Rev. Lett. 68, 48.CrossRefGoogle Scholar
[16] Tochitsky, S. Y., Narang, R., Flip, C. V., Musumeci, P., Clayton, C. E., Yoder, R. B., Marsh, K. A., Rosenzweig, J. B., Pellegrini, C. and Joshi, C. 2004 Phys. Plasmas 11 (5), 2875.CrossRefGoogle Scholar
[17] Gorbunov, L. M. and Kirsanov, V. L. 1987 Sov. Phys. JETP 66, 290.Google Scholar
[18] Sprangle, P., Esarey, E., Ting, A. and Joyce, G. 1988 Appl. Phys. Lett. 53, 2146.CrossRefGoogle Scholar
[19] Wagner, R., Chen, S., Maksimchuk, A. and Umstadter, D. 1997 Phys. Rev. Lett. 78, 3125.CrossRefGoogle Scholar
[20] Zhidkov, A., Koga, J., Hosokal, T., Kinoshita, K. and Uesaka, M. 2004 Phys. Plasmas 11 (12), 53795386.CrossRefGoogle Scholar
[21] Gorbunov, L. M. and Kalmkov, S. Y. 2004 Phys. Plasmas 12, 033101.CrossRefGoogle Scholar
[22] Sprangle, P., Esarey, E., Krall, J. and Joyce, G. 1992 Phys. Rev. Lett. 69, 2200.CrossRefGoogle Scholar
[23] Krall, J., Ting, A., Esarey, E. and Sprangle, P. 1993 Phys. Rev. E 48, 2157.CrossRefGoogle Scholar
[24] Nakajima, K. et al. 1995 Phys. Rev. Lett. 74, 4428.CrossRefGoogle Scholar
[25] Chen, W. T., Chien, T. Y., Lee, C. H., Lin, J. Y., Wang, J. and Chen, S. Y. 2004 Phys. Rev. Lett. 92, 75 003.CrossRefGoogle Scholar
[26] Ren, C., Hemker, R. G., Fonseca, R. A., Duda, B. J. and Mori, W. B. 2000 Phys. Rev. Lett. 85, 2124.CrossRefGoogle Scholar
[27] Mckinstrie, C. J. and Bingham, R. 1989 Phys. Fluids B 1, 230.CrossRefGoogle Scholar
[28] Esarey, E., Ting, A. and Sprangle, P. 1988 Appl. Phys. Lett. 53, 1266.CrossRefGoogle Scholar
[29] Mahmoud, S. T., Pandey, H. D. and Sharma, R. P. 2003 J. Plasma Phys. 69, 45.Google Scholar
[30] Akhamanov, S. A., Sukhorukov, A. P. and Khokhlov, R. V. 1968 Sov. Phys. Uspekhi 10, 609.CrossRefGoogle Scholar
[31] Sodha, M. S., Ghatak, A. K. and Tripathi, V. K. 1973 Progr. Optics 13, 171.Google Scholar
[32] Sodha, M. S., Govind, Tewari, D. P., Sharma, R. P. and Kaushik, S. C. 1979 J. Appl. Phys. 50 (1), 158.CrossRefGoogle Scholar
[33] Kumar, R., Pandey, H. D., Sharma, R. P. and Kumar, M. 1998 J. Plasma Phys. 60, 811.CrossRefGoogle Scholar
[34] Purohit, G., Chauhan, P., Pandey, H. D. and Sharma, R. P. 2005 Laser Particle Beams 23, 69.CrossRefGoogle Scholar