Skip to main content Accessibility help
×
Home

Effect of dust particle and magnetic field on EEPF and plasma oscillation

  • D. Kalita (a1), B. Kakati (a2), S. S. Kausik (a1), B. K. Saikia (a1) (a3) and M. Bandyopadhyay (a4) (a3)...

Abstract

The significance of dust particles for the electron energy probability function (EEPF) and plasma oscillations is studied under varying magnetic field strength in a filamentary discharge hydrogen plasma. The experimental result shows that with an increase in dust density, the electron density decreases as a result of the charging of dust grains in the plasma background. A bi-Maxwellian EEPF is computed in both a pristine hydrogen plasma and a dust-containing plasma at different magnetic field strengths. We have observed that the increase in magnetic field decreases the lower energy electron population. The electron population of the lower energy range shows nearly identical results at magnetic field, $B\leqslant 3.7$  mT whereas the behaviour of the high-energy electron population becomes identical for a field strength $B\leqslant 5.8$  mT. From the observation, we have seen that the mid energy electron population slightly decreases and the high energy electron population slightly increases due to the presence of dust particles as compared to a pristine plasma. Further, very low energy electron population remains almost unchanged. With increase in dust density, the mid energy electron population further decreases whereas the high energy electron population slightly increases for different magnetic fields. But, no changes were observed for the very low energy electron population in the presence of dust particles. From the study of plasma oscillation, it is observed that the dominant frequency associated with the plasma oscillation is matched with the ion cyclotron frequency. The amplitude of the ion cyclotron frequency reduces with the increase of dust density which might be due to the decrease of plasma density.

Copyright

Corresponding author

Email address for correspondence: deijikalita2009@gmail.com

References

Hide All
Bilik, N., Anthony, R., Merritt, B. A., Aydil, E. S. & Kortshagen, U. R. 2015 Langmuir probe measurements of electron energy probability functions in dusty plasmas. J. Phys. D: Appl. Phys. 48, 105204.
Boeuf, J. 1992 Characteristics of dusty nonthermal plasma from a particle-in-cell Monte Carlo simulation. Phys. Rev. A 46, 7910.
Crutcher, R. M. 2012 Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29.
Denysenko, I., Ostrikov, K., Yu, M. & Azarenkov, N. 2006 Behavior of the electron temperature in nonuniform complex plasmas. Phys. Rev. E 74, 036402.
Denysenko, I., Yu, M., Ostrikov, K., Azarenkov, N. & Stenflo, L. 2004a A kinetic model for an argon plasma containing dust grains. Phys. Plasmas 11, 4959.
Denysenko, I., Yu, M., Ostrikov, K. & Smolyakov, A. 2004b Spatially averaged model of complex-plasma discharge with self-consistent electron energy distribution. Phys. Rev. E 70, 046403.
Denysenko, I. B., Kersten, H. N. & Azarenkov, A. 2015 Electron energy distribution in a dusty plasma: analytical approach. Phys. Rev. E 92, 033102.
Ding, Q. Y., Zhang, S. B. & Wang, J. G. 2011 Simulation of hydrogen emission spectrum in Debye plasmas. Chin. Phys. Lett. 28, 053202.
Godyak, V. & Demidov, V. 2011 Probe measurements of electron-energy distributions in plasmas: what can we measure and how can we achieve reliable results? J. Phys. D: Appl. Phys. 44, 233001.
Goedheer, W., Akdim, M. & Chutov, Y. I. 2004 Hydrodynamic and kinetic modelling of dust free and dusty radio-frequency discharges. Contrib. Plasma Phys. 44, 395.
Greiner, F., Carstenson, J., Kohler, N., Pilch, I. & Piel, A. 2013 Trapping of nanodust clouds in a magnetized plasma. AIP Conf. Proc. 1521, 265.
Ip, W. H. & Mendis, D. A. 1976 The generation of magnetic fields and electric currents in cometary plasma tails. ICARUS 29, 147.
Kagan, YU. & Perel, V. L. 1964 Probe methods in plasma research. Sov. Phys. Uspekhi 6, 767.
Kakati, B., Kalita, D., Kausik, S. S., Bandyopadhyay, M. & Saikia, B. K. 2014a Studies on hydrogen plasma and dust charging in low- pressure filament discharge. Phys. Plasmas 21, 083704.
Kakati, B., Kausik, S. S., Saikia, B. K., Bandyopadhyay, M. & Saxena, Y. C. 2014b Effect of argon addition on plasma parameters and dust charging in hydrogen plasma. J. Appl. Phys. 116, 163302.
Kakati, B., Kausik, S. S., Saikia, B. K. & Bandyopadhyay, M. 2011 Study on plasma parameters and dust charging in an electrostatically plugged multicusp plasma device. Phys. Plasmas 18, 033705.
Kalita, D., Kakati, B., Saikia, B. K., Bandyopadhyay, M. & Kausik, S. S. 2015 Effect of magnetic field on dust charging and corresponding probe measurement. Phys. Plasmas 22, 113704.
Kalita, D., Kakati, B., Kausik, S. S., Saikia, B. K. & Bandyopadhyay, M. 2018 Studies on probe measurements in presence of magnetic field in dust containing hydrogen plasma. Eur. Phys. J. D 72, 74.
Li, G., Zhang, Y., Xu, Y. J., Lin, B. Y., Li, T. & Zhu, J. Q. 2009 Measurement of plasma density produced in dielectric barrier discharge for active aerodynamic control with interferometer. Chin. Phys. Lett. 26, 105202.
Lieberman, M. A. & Lichtenberg, A. J. 2005 Principles of Plasma Discharges and Materials Processing. Wiley.
Maemura, Y., Yang, S. C. & Fujiyama, H. 1998 Transport of negatively charged particles by $E\times B$ drift in silane plasmas. Surface and Coatings Technol. 98, 1351.
Nakamura, Y. 2002 Experiments on ion-acoustic shock waves in a dusty plasma. Phys. Plasmas 9, 440.
Nam, S. K. & Verboncoeur, J. P. 2009 Global model for high power microwave breakdown at high pressure in air. Comput. Phys. Commun. 180, 628.
Ostrikov, K., Denysenko, I., Yu, M. & Xu, S. 2005 Electron energy distribution function in low-pressure complex plasmas. J. Plasma Phys. 71, 217.
Samukawa, S. 1994 Highly selective and highly anisotropic SiO2 etching in Pulse- time modulated electron cyclotron resonance plasma. Japan. J. Appl. Phys. 33, 2133.
Stangeby, P. C. 1982 Effect of bias on trapping probes and bolometers for Tokamak edge diagnosis. J. Phys. D 15, 1007.
Sternberg, N., Godyak, V. & Hoffman, D. 2006 Magnetic field effects on gas discharge plasmas. Phys. Plasmas 13, 063511.
Tadsen, B., Greiner, F. & Piel, A. 2014 Preparation of magnetized nanodusty plasmas in a radio frequency-driven parallel plate reactor. Phys. Plasmas. 21, 103704.
Thomas, E. Jr., Merlino, R. L. & Rosenberg, M. 2012 Magnetized dusty plasmas: the next frontier for complex plasma research. Plasma Phys. Control. Fusion 54, 24034.
Wang, D. & Dong, J. 1997 Kinetics of low pressure rf discharges with dust particles. J. Appl. Phys. 81, 38.
Yang, S. C., Nakajima, Y., Maemura, Y., Matsuda, Y. & Fujiyama, H. 1996 Mechanism of particle transport in magnetized silane plasmas. Plasma Sources Sci. Technol. 5, 333.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed