Skip to main content Accessibility help
×
Home

Drift-Alfvén fluctuations and transport in multiple interacting magnetized electron temperature filaments

  • R. D. Sydora (a1), S. Karbashewski (a1), B. Van Compernolle (a2), M. J. Poulos (a2) and J. Loughran (a1)...

Abstract

The results of a basic electron heat transport experiment using multiple localized heat sources in close proximity and embedded in a large magnetized plasma are presented. The set-up consists of three biased probe-mounted crystal cathodes, arranged in a triangular spatial pattern, that inject low energy electrons along a strong magnetic field into a pre-existing, cold afterglow plasma, forming electron temperature filaments. When the three sources are activated and placed within a few collisionless electron skin depths of each other, a non-azimuthally symmetric wave pattern emerges due to interference of the drift-Alfvén modes that form on each filament’s temperature gradient. Enhanced cross-field transport from chaotic ( $\boldsymbol{E}\times \boldsymbol{B}$ , where $\boldsymbol{E}$ is the electric field and $\boldsymbol{B}$ the magnetic field) mixing rapidly relaxes the gradients in the inner triangular region of the filaments and leads to growth of a global nonlinear drift-Alfvén mode that is driven by the thermal gradient in the outer region of the triangle. Azimuthal flow shear arising from the emissive cathode sources modifies the linear eigenmode stability and convective pattern. A steady-current model with emissive sheath boundary predicts the plasma potential and shear flow contribution from the sources.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Drift-Alfvén fluctuations and transport in multiple interacting magnetized electron temperature filaments
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Drift-Alfvén fluctuations and transport in multiple interacting magnetized electron temperature filaments
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Drift-Alfvén fluctuations and transport in multiple interacting magnetized electron temperature filaments
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: rsydora@ualberta.ca

References

Hide All
Abdalla, T. M., Kuvshinov, B. N., Schep, T. J. & Westerhof, E. 2001 Electron vortex generation by strong, localized plasma heating. Phys. Plasmas 8 (9), 3957.
Beurskens, M. N. A., Lopes Cardozo, N. J., Arends, E. R., Barth, C. J. & van der Meiden, H. J. 2001 Filamentation in the rtp tokamak plasma. Plasma Phys. Control. Fusion 43 (1), 13.
Brandt, C., Grulke, O., Klinger, T., Negrete, J., Bousselin, G., Brochard, F., Bonhomme, G. & Oldenbürger, S. 2011 Spatiotemporal mode structure of nonlinearly coupled drift wave modes. Phys. Rev. E 84, 056405.
Burke, A. T., Maggs, J. E. & Morales, G. J. 1998 Observation of simultaneous axial and transverse classical heat transport in a magnetized plasma. Phys. Rev. Lett. 81 (17), 3659.
Burke, A. T., Maggs, J. E. & Morales, G. J. 2000a Experimental study of classical heat transport in a magnetized plasma. Phys. Plasmas 7 (2), 544.
Burke, A. T., Maggs, J. E. & Morales, G. J. 2000b Experimental study of fluctuations excited by a narrow temperature filament in a magnetized plasma. Phys. Plasmas 7 (5), 1397.
Burke, A. T., Maggs, J. E. & Morales, G. J. 2000c Spontaneous fluctuations of a temperature filament in a magnetized plasma. Phys. Rev. Lett. 84 (7), 1451.
Cardozo, N. J. L., Schüller, F. C., Barth, C. J., Chu, C. C., Pijper, F. J., Lok, J. & Oomens, A. A. M. 1994 Plasma filamentation in the rijnhuizen tokamak rtp. Phys. Rev. Lett. 73, 256.
Carter, T. A. 2006 Intermittent turbulence and turbulent structures in a linear magnetized plasma. Phys. Plasmas 13 (1), 010701.
Chen, F. F. 2001 Langmuir probe analysis for high density plasmas. Phys. Plasmas 8 (6), 30293041.
Gekelman, W., Pribyl, P., Lucky, Z., Drandell, M., Leneman, D., Maggs, J., Vincena, S., Van Compernolle, B., Tripathi, S. K. P., Morales, G. et al. 2016 The upgraded large plasma device, a machine for studying frontier basic plasma physics. Rev. Sci. Instrum. 87 (2), 025105.
Herranz, J., Pastor, I., Castejón, F., de la Luna, E., García-Cortés, I., Barth, C. J., Ascasíbar, E., Sánchez, J. & Tribaldos, V. 2000 Profile structures of tj-ii stellarator plasmas. Phys. Rev. Lett. 85, 4715.
Jin, S., Poulos, M. J., Van Compernolle, B. & Morales, G. J. 2019 Plasma flows generated by an annular thermionic cathode in a large magnetized plasma. Phys. Plasmas 26 (2), 022105.
Karbashewski, S., Sydora, R. D., Van Compernolle, B. & Poulos, M. J. 2018 Driven thermal waves and determination of the thermal conductivity in a magnetized plasma. Phys. Rev. E 98, 051202.
Leneman, D. & Gekelman, W. 2001 A novel angular motion feedthrough. Rev. Sci. Instrum. 72, 3473.
Maggs, J. E. & Morales, G. J. 2013 Permutation entropy analysis of temperature fluctuations from a basic electron heat transport experiment. Plasma Phys. Control. Fusion 55 (8), 085015.
Merlino, R. L. 2007 Understanding langmuir probe current-voltage characteristics. Am. J. Phys. 75 (12), 1078.
Morales, G. J., Maggs, J. E., Burke, A. T. & Peñano, J. R. 1999 Alfvénic turbulence associated with density and temperature filaments. Plasma Phys. Control. Fusion 41 (3A), A519.
Pace, D. C., Shi, M., Maggs, J. E., Morales, G. J. & Carter, T. A. 2008a Exponential frequency spectrum and lorentzian pulses in magnetized plasmas. Phys. Plasmas 15 (12), 122304.
Pace, D. C., Shi, M., Maggs, J. E., Morales, G. J. & Carter, T. A. 2008b Exponential frequency spectrum in magnetized plasmas. Phys. Rev. Lett. 101, 085001.
Pace, D. C., Shi, M., Maggs, J. E., Morales, G. J. & Carter, T. A. 2008c Spontaneous thermal waves in a magnetized plasma. Phys. Rev. Lett. 101, 035003.
Peñano, J., Morales, G. J. & Maggs, J. E. 1997 Properties of drift waves in a filamentary density depletion. Phys. Plasmas 4 (3), 555.
Peñano, J. R., Morales, G. J. & Maggs, J. E. 2000 Drift-Alfvén fluctuations associated with a narrow pressure striation. Phys. Plasmas 7 (1), 144.
Poulos, M. J. 2019 Model for the operation of an emissive cathode in a large magnetized-plasma. Phys. Plasmas 26 (2), 022104.
Poulos, M. J. & Morales, G. J. 2016 Transport properties of a hollow pressure filament in a magnetized plasma. Phys. Plasmas 23 (9), 092302.
Poulos, M. J., Van Compernolle, B. & Morales, G. J. 2017 Tornado-like transport in a magnetized plasma. In APS Meeting Abstracts. American Institute of Physics.
Serianni, G., Agostini, M., Antoni, V., Cavazzana, R., Martines, E., Sattin, F., Scarin, P., Spada, E., Spolaore, M., Vianello, N. et al. 2007 Coherent structures and transport properties in magnetized plasmas. Plasma Phys. Control. Fusion 49 (12B), B267.
Shi, M., Pace, D. C., Morales, G. J., Maggs, J. E. & Carter, T. A. 2009 Structures generated in a temperature filament due to drift-wave convection. Phys. Plasmas 16 (6), 062306.
Stasiewciz, K., Gustafsson, G., Marklund, G., Lindqvist, P. A., Clemmons, J. & Zanetti, L. 1997 Cavity resonators and Alfvén resonance cones observed on freja. J. Geophys. Res. 102, 2565.
Sydora, R. D., Morales, G. J., Maggs, J. E. & Van Compernolle, B. 2015 Three-dimensional gyrokinetic simulation of the relaxation of a magnetized temperature filament. Phys. Plasmas 22 (10), 102303.
Thakur, S. C., Brandt, C., Cui, L., Gosselin, J. J., Light, A. D. & Tynan, G. R. 2014 Multi-instability plasma dynamics during the route to fully developed turbulence in a helicon plasma. Plasma Sources Sci. Technol. 23 (4), 044006.
Van Compernolle, B. & Morales, G. J. 2017 Avalanches driven by pressure gradients in a magnetized plasma. Phys. Plasmas 24 (11), 112302.
Wygant, J. R., Keiling, A., Cattell, C. A., Johnson, M., Lysak, R. L., Temerin, M., Mozer, F. S., Kletzing, C. A., Scudder, J. D., Peterson, W. et al. 2000 Polar spacecraft based comparisons of intense electric fields and poynting flux near and within the plasma sheet-tail lobe boundary to uvi images: an energy source for the aurora. J. Geophys. Res. 105, 18675.
Zweben, S. J. & Medley, S. S. 1989 Visible imaging of edge fluctuations in the tftr tokamak. Phys. Fluids B 1 (10), 2058.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Drift-Alfvén fluctuations and transport in multiple interacting magnetized electron temperature filaments

  • R. D. Sydora (a1), S. Karbashewski (a1), B. Van Compernolle (a2), M. J. Poulos (a2) and J. Loughran (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed