Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-10T06:03:06.696Z Has data issue: false hasContentIssue false

Design and construction of the near-earth space plasma simulation system of the Space Plasma Environment Research Facility

Published online by Cambridge University Press:  11 January 2024

W. Ling
Affiliation:
Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, PR China
C. Jing
Affiliation:
Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, PR China
J. Wan
Affiliation:
Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, PR China
A. Mao
Affiliation:
Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, PR China
Q. Xiao
Affiliation:
Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, PR China
J. Guan
Affiliation:
Department of Electrical Engineering, Harbin Institute of Technology, Harbin 150001, PR China
J. Cheng
Affiliation:
Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, PR China
C. Liu
Affiliation:
Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, PR China
P. E*
Affiliation:
Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin 150001, PR China
*
Email address for correspondence: epeng@hit.edu.cn

Abstract

Our earth is immersed in the near-earth space plasma environment, which plays a vital role in protecting our planet against the solar-wind impact and influencing space activities. It is significant to investigate the physical processes dominating the environment, for deepening our scientific understanding of it and improving the ability to forecast the space weather. As a crucial part of the National Major Scientific and Technological Infrastructure–Space Environment Simulation Research Infrastructure (SESRI) in Harbin, the Space Plasma Environment Research Facility (SPERF) builds a system to replicate the near-earth space plasma environment in the laboratory. The system aims to simulate the three-dimensional (3-D) structure and processes of the terrestrial magnetosphere for the first time in the world, providing a unique platform to reveal the physics of the 3-D asymmetric magnetic reconnection relevant to the earth's magnetopause, wave–particle interaction in the earth's radiation belt, particles’ dynamics during the geomagnetic storm, etc. The paper will present the engineering design and construction of the near-earth space plasma simulation system of the SPERF, with a focus on the critical technologies that have been resolved to achieve the scientific goals. Meanwhile, the possible physical issues that can be studied based on the apparatus are sketched briefly. The earth-based system is of great value in understanding the space plasma environment and supporting space exploration.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agudelo Rueda, J.A., Verscharen, D., Wicks, R.T., Owen, C.J., Nicolaou, G., Walsh, A.P., Zouganelis, I., Germaschewski, K. & Vargas Domínguez, S. 2021 Three-dimensional magnetic reconnection in particle-in-cell simulations of anisotropic plasma turbulence. J. Plasma Phys. 87 (3), 905870228.CrossRefGoogle Scholar
Angelopoulos, V., Artemyev, A., Phan, T.D. & Miyashita, Y. 2020 Near-Earth magnetotail reconnection powers space storms. Nat. Phys. 16 (3), 317321.CrossRefGoogle Scholar
Artemyev, A., Agapitov, O., Mourenas, D., Krasnoselskikh, V., Shastun, V. & Mozer, F. 2016 Oblique whistler-mode waves in the Earth's inner magnetosphere: energy distribution, origins, and role in radiation belt dynamics. Space Sci. Rev. 200 (1-4), 261355.CrossRefGoogle Scholar
Artemyev, A.V., Neishtadt, A.I., Vasiliev, A.A. & Mourenas, D. 2018 Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves. J. Plasma Phys. 84 (2), 905840206.CrossRefGoogle Scholar
Bamford, R., Kellett, B., Bradford, J., Todd, T., Benton, M., Stafford-Allen, R., Alves, E., Silva, L., Collingwood, C., Crawford, I., et al. 2014 An exploration of the effectiveness of artificial mini-magnetospheres as a potential solar storm shelter for long term human space missions. Acta Astronaut. 105 (2), 385394.CrossRefGoogle Scholar
Bamford, R., Kellett, B., Green, J., Dong, C., Airapetian, V. & Bingham, R. 2022 How to create an artificial magnetosphere for Mars. Acta Astronaut. 190, 323333.CrossRefGoogle Scholar
Bohlin, H., Von Stechow, A., Rahbarnia, K., Grulke, O. & Klinger, T. 2014 VINETA II: a linear magnetic reconnection experiment. Rev. Sci. Instrum. 85 (2), 023501.CrossRefGoogle Scholar
Boxer, A.C., Bergmann, R., Ellsworth, J.L., Garnier, D.T., Kesner, J., Mauel, M.E. & Woskov, P. 2010 Turbulent inward pinch of plasma confined by a levitated dipole magnet. Nat. Phys. 6 (3), 207212.CrossRefGoogle Scholar
Chen, X., Zhang, H., Zong, Q., Zhou, X., Zou, H., Wang, Y. & Yue, C. 2022 Non-adiabatic acceleration of injected electrons in the inner magnetosphere: joint observations by the Van Allen Probe and the BeiDa Imaging Electron Spectrometer. Geophys. Res. Lett. 49 (21).CrossRefGoogle Scholar
Dunlop, M.W., Zhang, Q., Xiao, C., He, J., Pu, Z., Fear, R.C., Shen, C. & Escoubet, C.P. 2009 Reconnection at high latitudes: antiparallel merging. Phys. Rev. Lett. 102 (7), 075005.CrossRefGoogle ScholarPubMed
E, P., Guan, J., Jin, C., Mao, A., Ma, X., Deng, W., Ding, M., Kang, C., Li, S., Xiao, J., et al. 2021 a An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): the subsystem for the magnetopause shape control coils. Rev. Sci. Instrum. 92 (6), 064709.CrossRefGoogle ScholarPubMed
E, P., Guan, J., Ling, W., Ma, X., Mao, A., Deng, W., Ding, M., Li, S., Kang, C. & Li, H. 2021 b An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): modular design method and component selection. Rev. Sci. Instrum. 92 (3), 034709.CrossRefGoogle ScholarPubMed
E, P., Guan, J., Ma, X., Mao, A., Deng, W., Ding, M., Kang, C., Li, S., Xiao, J. & Li, H. 2021 c An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): the subsystem for the dipole coil. Rev. Sci. Instrum. 92 (4), 044706.CrossRefGoogle ScholarPubMed
E, P., Ling, W., Mao, A., Jin, C., Xiao, Q., Xu, F., Chen, C., Bai, X., Hao, H., Lu, Y., et al. 2021 d The magnet system of the Space Plasma Environment Research Facility (SPERF): parameter design and electromagnetic analysis. Rev. Sci. Instrum. 92 (4), 044709.CrossRefGoogle ScholarPubMed
E, P., Ling, W., Mao, A., Jin, C., Zhu, G., Tan, L., Chen, C. & Lu, Y. 2021 e Design and construction of the Flux Core coils of the Space Plasma Environment Research Facility (SPERF). Vacuum 192, 110468.CrossRefGoogle Scholar
E, P., Ling, W., Mao, A., Xiao, Q., Guan, J. & Zhang, Z. 2020 Study on the magnetic forces of the dipole in the SPERF. IEEE Trans. Plasma Sci. 48 (1), 266274.CrossRefGoogle Scholar
Forest, C., Flanagan, K., Brookhart, M., Clark, M., Cooper, C.M., Désangles, V., Egedal, J., Endrizzi, D., Khalzov, I.V., Li, H., et al. 2015 The Wisconsin plasma astrophysics laboratory. J. Plasma Phys. 81 (5), 345810501.CrossRefGoogle Scholar
Fox, N. & Burch, J.L. (Ed.) 2014 The Van Allen Probes Mission, 1st edn. Springer.CrossRefGoogle Scholar
Frantsuzov, V.A., Artemyev, A.V., Zhang, X.-J., Allanson, O., Shustov, P.I. & Petrukovich, A.A. 2023 Diffusive scattering of energetic electrons by intense whistler-mode waves in an inhomogeneous plasma. J. Plasma Phys. 89 (1), 905890101.CrossRefGoogle Scholar
Fu, H.S., Cao, J.B., Cao, D., Wang, Z., Vaivads, A., Khotyaintsev, Y.V., Burch, J.L. & Huang, S.Y. 2019 Evidence of magnetic nulls in electron diffusion region. Geophys. Res. Lett. 46 (1), 4854.CrossRefGoogle Scholar
Garnier, D., Hansen, A., Kesner, J., Mauel, M., Michael, P., Minervini, J., Radovinsky, A., Zhukovsky, A., Boxer, A., Ellsworth, J., et al. 2006 Design and initial operation of the LDX facility. Fusion Engng Des. 81 (20-22), 23712380.CrossRefGoogle Scholar
Gonzalez, W. & Parker, E. (Ed.) 2016 Magnetic Reconnection: Concepts and Applications, 1st edn., Astrophysics and Space Science Library, vol. 427. Springer (Imprint).CrossRefGoogle Scholar
Gu, X., Shprits, Y.Y. & Ni, B. 2012 Parameterized lifetime of radiation belt electrons interacting with lower-band and upper-band oblique chorus waves: parameterization of electron lifetimes. Geophys. Res. Lett. 39 (15).Google Scholar
Guan, J., E, P., Ma, X., Mao, A., Deng, W., Ding, M., Kang, C., Li, S., Xiao, J., Tong, W., et al. 2021 a An 18.3-MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): the subsystem for the magnetosheath coils. Rev. Sci. Instrum. 92 (8), 084701.CrossRefGoogle ScholarPubMed
Guan, J., E, P., Mao, A., Ma, X., Jin, C., Deng, W., Ding, M., Li, S., Kang, C., Xiao, J., et al. 2021 b An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF): the subsystem for the magnetic perturbation coils. Rev. Sci. Instrum. 92 (9), 094706.CrossRefGoogle ScholarPubMed
Guan, J., Ling, W., Ma, X., Li, H., Tong, W. & E, P. 2022 Design of pulsed current source for Toroidal Field coils in SPERF. J. Power Supply 20 (6), 154183.Google Scholar
Guo, R., Pu, Z., Wang, X., Xiao, C. & He, J. 2022 3D reconnection geometries with magnetic nulls: multispacecraft observations and reconstructions. J. Geophys. Res.: Space Phys. 127 (2).CrossRefGoogle Scholar
Hare, J.D., Lebedev, S.V., Suttle, L.G., Loureiro, N.F., Ciardi, A., Burdiak, G.C., Chittenden, J.P., Clayson, T., Eardley, S.J., Garcia, C., et al. 2017 b Formation and structure of a current sheet in pulsed-power driven magnetic reconnection experiments. Phys. Plasmas 24 (10), 102703.CrossRefGoogle Scholar
Hare, J., Suttle, L., Lebedev, S., Loureiro, N., Ciardi, A., Burdiak, G., Chittenden, J., Clayson, T., Garcia, C., Niasse, N., et al. 2017 a Anomalous heating and plasmoid formation in a driven magnetic reconnection experiment. Phys. Rev. Lett. 118 (8), 085001.CrossRefGoogle Scholar
Ji, H. & Daughton, W. 2011 Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Phys. Plasmas 18 (11), 111207.CrossRefGoogle Scholar
Ji, H., Daughton, W., Jara-Almonte, J., Le, A., Stanier, A. & Yoo, J. 2022 Magnetic reconnection in the era of exascale computing and multiscale experiments. Nat. Rev. Phys. 4 (4), 263282.CrossRefGoogle Scholar
Jin, C., Zhang, Y., Ling, W., Chen, C., Wang, H., Hao, H., Dong, Y., Lu, Y., Li, L. & E, P. 2023 Vacuum system of the Space Plasma Environment Research Facility. J. Vac. Sci. Technol. B 41 (3), 034204.CrossRefGoogle Scholar
Jin, C., Zhang, Y., Ling, W., Liu, M., E, P., Chen, C., Li, Y., Peng, Z., Lu, Y. & Li, L. 2022 a Vacuum control system for the Space Plasma Environment Research Facility. J. Vac. Sci. Technol. B 40 (3), 034201.CrossRefGoogle Scholar
Jin, C., Zhang, Y., Ling, W., Yang, X., Cheng, J., Feng, L., Wan, J., Wang, H., Lu, Y., Li, L., et al. 2022 b Design of the vacuum-centralized control system for the space plasma environment research facility based on the Experimental Physics and Industrial Control System. J. Vac. Sci. Technol. B 40 (4), 044202.CrossRefGoogle Scholar
Lapenta, G., Pucci, F., Olshevsky, V., Servidio, S., Sorriso-Valvo, L., Newman, D.L. & Goldman, M.V. 2018 Nonlinear waves and instabilities leading to secondary reconnection in reconnection outflows. J. Plasma Phys. 84 (1), 715840103.CrossRefGoogle Scholar
Li, W., Bortnik, J., Thorne, R.M. & Angelopoulos, V. 2011 Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations: chorus wave distribution on THEMIS. J. Geophys. Res. 116, A12205.CrossRefGoogle Scholar
Ling, W., Jin, C., E, P., Zhu, G., Xu, F., Chen, C., Lu, Y., Wu, J. & Li, L. 2022 a Design and construction of the magnetic mirror magnets of the space plasma environment research facility (SPERF). Vacuum 205, 111402.CrossRefGoogle Scholar
Ling, W., Jin, C., Mao, A., E, P., Wu, J., Zhu, G., Chen, C., Lu, Y.-W. & Li, L. 2022 b Design and construction of the dipole magnet of the space plasma environment research facility (SPERF) for simulating the earth magnetosphere. Vacuum 201, 111112.CrossRefGoogle Scholar
Ling, W., Jin, C., Yin, M., Guan, J., Zhu, G., Xu, F., Chen, C., Lu, Y., Wu, J., Li, L., et al. 2023 a Design and construction of the magnetopause shape control coils of the Space Plasma Environment Research Facility to regulate the field configuration of the simulated Earth's magnetopause magnetic reconnection. Vacuum 212, 111975.CrossRefGoogle Scholar
Ling, W., Jin, C., Zhu, G., Xu, F., Chen, C., Lu, Y., Wu, J., Li, L. & E, P. 2023 b Design and construction of the magnetic perturbation magnets of the space plasma environment research facility for simulating the geomagnetic storm on the ground. Vacuum 209, 111756.CrossRefGoogle Scholar
Mao, A., Ma, X., E, P., Guan, J., Ling, W., Li, L. & Li, H. 2020 An 18.3 MJ charging and discharging pulsed power supply system for the Space Plasma Environment Research Facility (SPERF). I. The overall design. Rev. Sci. Instrum. 91 (8), 084702.CrossRefGoogle ScholarPubMed
Mao, A., Ren, Y., Ji, H., E, P., Han, K., Wang, Z., Xiao, Q. & Li, L. 2017 Conceptual design of the three-dimensional magnetic field configuration relevant to the magnetopause reconnection in the SPERF. Plasma Sci. Technol. 19 (3), 034002.CrossRefGoogle Scholar
Maslovsky, D., Levitt, B. & Mauel, M.E. 2003 Observation of nonlinear frequency-sweeping suppression with rf diffusion. Phys. Rev. Lett. 90 (18), 185001.CrossRefGoogle ScholarPubMed
Mäusle, R. 2021 Investigation of topology-driven magnetic reconnection with CWENO finite volume numerics. Master's thesis, Freie Universität Berlin.Google Scholar
Millan, R.M. & Baker, D.N. 2012 Acceleration of particles to high energies in Earth's radiation belts. Space Sci. Rev. 173 (1-4), 103131.CrossRefGoogle Scholar
Nishiura, M., Yoshida, Z., Kenmochi, N., Sugata, T., Nakamura, K., Mori, T., Katsura, S., Shirahata, K. & Howard, J. 2019 Experimental analysis of self-organized structure and transport on the magnetospheric plasma device RT-1. Nucl. Fusion 59 (9), 096005.CrossRefGoogle Scholar
Nishiura, M., Yoshida, Z., Saitoh, H., Yano, Y., Kawazura, Y., Nogami, T., Yamasaki, M., Mushiake, T. & Kashyap, A. 2015 Improved beta (local beta >1) and density in electron cyclotron resonance heating on the RT-1 magnetosphere plasma. Nucl. Fusion 55 (5), 053019.CrossRefGoogle Scholar
Olson, J., Egedal, J., Greess, S., Myers, R., Clark, M., Endrizzi, D., Flanagan, K., Milhone, J., Peterson, E., Wallace, J., et al. 2016 Experimental demonstration of the collisionless plasmoid instability below the ion kinetic scale during magnetic reconnection. Phys. Rev. Lett. 116 (25), 255001.CrossRefGoogle ScholarPubMed
Pontin, D. 2011 Three-dimensional magnetic reconnection regimes: a review. Adv. Space Res. 47 (9), 15081522.CrossRefGoogle Scholar
Pontin, D.I., Galsgaard, K., Hornig, G. & Priest, E.R. 2005 A fully magnetohydrodynamic simulation of three-dimensional non-null reconnection. Phys. Plasmas 12 (5), 052307.CrossRefGoogle Scholar
Priest, E.R. & Pontin, D.I. 2009 Three-dimensional null point reconnection regimes. Phys. Plasmas 16 (12), 122101.CrossRefGoogle Scholar
Pucci, F., Velli, M., Shi, C., Singh, K.A.P., Tenerani, A., Alladio, F., Ambrosino, F., Buratti, P., Fox, W., Jara-Almonte, J., et al. 2020 Onset of fast magnetic reconnection and particle energization in laboratory and space plasmas. J. Plasma Phys. 86 (6), 535860601.CrossRefGoogle Scholar
Ren, Y., Yamada, M., Ji, H., Gerhardt, S.P. & Kulsrud, R. 2008 Identification of the electron-diffusion region during magnetic reconnection in a laboratory plasma. Phys. Rev. Lett. 101 (8), 085003.CrossRefGoogle Scholar
Ripoll, J., Claudepierre, S.G., Ukhorskiy, A.Y., Colpitts, C., Li, X., Fennell, J.F. & Crabtree, C. 2020 Particle dynamics in the Earth's radiation belts: review of current research and open questions. J. Geophys. Res. Space Phys. 125 (5).CrossRefGoogle Scholar
Sitnov, M., Birn, J., Ferdousi, B., Gordeev, E., Khotyaintsev, Y., Merkin, V., Motoba, T., Otto, A., Panov, E., Pritchett, P., et al. 2019 Explosive magnetotail activity. Space Sci. Rev. 215 (4), 31.CrossRefGoogle ScholarPubMed
Stevenson, J.E. 2015 On the properties of single-separator MHS equilibria and the nature of separator reconnection. PhD thesis, University of St Andrews.Google Scholar
Thorne, R.M. 2010 Radiation belt dynamics: he importance of wave-particle interactions. Geophys. Res. Lett. 37 (22), L22107.CrossRefGoogle Scholar
Thorne, R.M., Bortnik, J., Li, W. & Ma, Q. 2021 Wave-particle interactions in the Earth's magnetosphere. In Geophysical Monograph Series, 1st edn (ed. R. Maggiolo, N. André, H. Hasegawa, D.T. Welling, Y. Zhang & L.J. Paxton), pp. 93–108. Wiley.CrossRefGoogle Scholar
Wang, Y. 2015 Recent advances in radiation belt dynamics and wave-particle interactions in the Earth's inner magnetosphere. Sci. China Earth Sci. 58 (12), 23552356.CrossRefGoogle Scholar
Xiao, Q., Wang, Z., Wang, X., Xiao, C., Yang, X. & Zheng, J. 2017 Conceptual design of Dipole Research Experiment (DREX). Plasma Sci. Technol. 19 (3), 035301.CrossRefGoogle Scholar
Yamada, M., Kulsrud, R. & Ji, H. 2010 Magnetic reconnection. Rev. Mod. Phys. 82 (1), 603664.CrossRefGoogle Scholar
Yang, Q., Gao, L., Shi, P., Zhou, Y., Wang, Y. & Zhou, C. 2021 Upgrade of far infrared three-wave polarimeter–interferometer system on Joint-TEXT. Rev. Sci. Instrum. 92 (5), 053527.CrossRefGoogle ScholarPubMed
Yu, Y., Delzanno, G.L., Jordanova, V., Peng, I.B. & Markidis, S. 2018 PIC simulations of wave-particle interactions with an initial electron velocity distribution from a kinetic ring current model. J. Atmos. Sol.-Terr. Phys. 177, 169178.CrossRefGoogle Scholar
Zhong, J., Li, Y., Wang, X., Wang, J., Dong, Q., Xiao, C., Wang, S., Liu, X., Zhang, L., An, L., et al. 2010 Modelling loop-top X-ray source and reconnection outflows in solar flares with intense lasers. Nat. Phys. 6 (12), 984987.CrossRefGoogle Scholar
Zhou, X., Xiao, F., He, Y., Yang, C., Zhou, Q., Zhang, Z., Gao, Z. & Ding, Y. 2013 Responses of geostationary orbit energetic electron fluxes to chorus waves under different geomagnetic conditions. Sci. China Earth Sci. 56 (12), 20062014.CrossRefGoogle Scholar
Zong, Q., Yuan, C., Wang, Y. & Su, Z. 2013 Dynamic variation and the fast acceleration of particles in Earth's radiation belt. Sci. China Earth Sci. 56 (7), 11181140.CrossRefGoogle Scholar