Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T02:25:50.624Z Has data issue: false hasContentIssue false

Decay of the lower-hybrid wave into an ion cyclotron mode and a whistler wave

Published online by Cambridge University Press:  13 March 2009

M. K. Saxena
Affiliation:
Department of Physics, University of Rajasthan, Jaipur-302004, India

Abstract

The electrostatic lower-hybrid wave is shown to decay parametrically into a whistler wave and a resonant ion cyclotron mode or an ion cyclotron quasi-mode or a reactive quasi-mode. The convective threshold powers for these decay instabilities are found to be much larger than presently available pump powers. These decay instabilities, however, are expected to play an important role in the saturation of the parametrically excited short-wavelength lower-hybrid waves having frequency close to ωlh.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alikaev, V. V., Absen'ev, Yu. I., Bobrovskii, G. A., Poznyak, V. I., Razumoua, K. A. & Sokolov, Yu. A. 1975 Soviet Phys. Tech. Phys. 20, 237.Google Scholar
Bellan, P. & Porkolab, M. 1974 Phys. Fluids, 17, 1592.CrossRefGoogle Scholar
Berger, R. L. & Chen, L. 1976 Phys. Fluids, 19, 1392.Google Scholar
Berger, R. L., Chen, L. & Perkins, F. W. 1976 Princeton Plasma Physics Laboratory Report PPPL-1307.Google Scholar
Berger, R. L. & Perkins, F. W. 1976 Phys. Fluids, 19, 406.CrossRefGoogle Scholar
Drake, J., Lee, Y. C., Schmidt, G., Liu, C. S. & Rosenbluth, M. N. 1974 Phys. Fluids, 17, 778.Google Scholar
Gromezano, C. et al. 1978 Proceedings of 3rd Topical Conference on RF Plasma Heating (Plasma Laboratory, California Institute of Technology), paper A3.Google Scholar
Hasegawa, A. & Chen, L. 1975 Phys. Fluids, 18, 1321.CrossRefGoogle Scholar
Jassby, D. L., Berkner, K. H., Colestock, P. L., Freeman, R. L., Haselton, H. H., Hosea, J. C., Rome, J. A., Scharer, J. E., Sheffield, J. & Stewart, L. D. 1979 Princeton Plasma Physics Laboratory Report PPPL-1610.Google Scholar
Javel, P., Müller, G., Oordt, A., Van Weber, U. & Weynants, R. R. 1975 Proceedings of 7th European Conference on Controlled Fusion and Plasma Research, Lausanne, vol. 1, p. 147.Google Scholar
Kindel, J. M., Okuda, H. & Dawson, J. M. 1972 Phys. Rev. Lett. 29, 995.CrossRefGoogle Scholar
Mikhailovskii, A. B. 1974 Theory of Plasma Instabilities, vol. 1, pp. 137, 155. Consultants Bureau.Google Scholar
Moreno, T. 1958 Microwave Transmission Design Data, ch. 7. Dover.Google Scholar
Ott, E. 1975 Phys. Fluids, 18, 566.CrossRefGoogle Scholar
Porkolab, M. 1974 Phys. Fluids, 17, 1432.CrossRefGoogle Scholar
Porkolab, M. 1977 Phys. Fluids, 20, 2058.Google Scholar
Porkolab, M., Bernabei, S., Hooke, W. M., Motley, R. W. & Nagashima, T. 1977 Phys. Rev. Lett. 38, 230.Google Scholar
Tripathi, V. K., Grebogi, C. & Liu, C. S. 1977 Phys. Fluids, 20, 1525.Google Scholar
Tripathi, V. K., Liu, C. S. & Grebogi, C. 1979 Phys. Fluids, 22, 301.CrossRefGoogle Scholar