Skip to main content Accessibility help

Collimation of laser-driven energetic protons in a capillary

  • D.-P. CHEN (a1), Y. YIN (a1), Z.-Y. GE (a1), H. XU (a2), H.-B. ZHUO (a1), Y.-Y. MA (a1), F.-Q. SHAO (a1) and C.-L. TIAN (a1)...


Energetic divergent proton beams can be generated in the interaction of ultra-intense laser pulses with solid-density foil targets via target normal sheath acceleration (TNSA). In this paper, a scheme using a capillary to reduce the proton beam divergence is proposed. By two-dimensional particle-in-cell (PIC) simulations, it is shown that strong transverse electric and magnetic fields rapidly grow at the inner surface of the capillary when the laser-driven hot electrons propagate through the target and into the capillary. The spontaneous magnetic field collimates the electron flow, and the ions dragged from the capillary wall by hot electrons neutralize the negative charge and thus restrain the transverse extension of the sheath field set up by electrons. The proton beam divergence, which is mainly determined by the accelerating sheath field, is therefore reduced by the transverse limitation of the sheath field in the capillary.



Hide All
[1]Roth, M., Cowan, T. E., Key, M. H., et al. 2001 Phys. Rev. Lett. 86, 436.
[2]Borghesi, M., Fuchs, J., Bulanov, S. V., Mackinnon, A. J., Patel, P. K. and Roth, M. 2006 Fusion Sci. Technol. 49, 412.
[3]Bulanov, S. and Khoroshkov, V. 2002 Plasma Phys. Rep. 28, 453.
[4]Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A., Snavely, R. A., et al. 2001 Phys. Plasmas 8, 542.
[5]Zhang, X. M., Shen, B. F., Li, X. M., Jin, Z. Y., Wang, F. C. and Wen, M. 2007 Phys. Plasmas 14, 123108.
[6]Chen, M., Sheng, Z. M., Dong, Q. L., He, M. Q., Li, Y. T., Bari, M. A. and Zhang, J. 2007 Phys. Plasmas 14, 053102.
[7]Yan, X. Q., Lin, C., Sheng, Z. M., Guo, Z. Y., Liu, B. C., Lu, Y. R., Fang, J. X. and Chen, J. E. 2008 Phys. Rev. Lett. 100, 135003.
[8]Macchi, A., Veghini, S. and Pegoraro, F. 2009 Phys. Rev. Lett. 103, 085003.
[9]Zhuo, H. B., Chen, Z. L., Yu, W., Sheng, Z. M., Yu, M. Y., Jin, Z. and Kodama, R. 2010 Phys. Rev. Lett. 105, 065003.
[10]Passoni, M., Bertagna, L. and Zani, A. 2010 New J. Phys. 12, 045012.
[11]Sonobe, R., Kawata, S., Miyazaki, S., Nakamura, M. and Kikuchi, T. 2005 Phys. Plasmas 12, 073104.
[12]Okada, T., Andreev, A. A., Mikado, Y. and Okubo, K. 2006 Phys. Rev. E. 74, 026401.
[13]Patel, P. K., Mackinnon, A. J., Key, M. H., Cowan, T. E., Foord, M. E., Allen, M., Price, D. F., Ruhl, H., Springer, P. T. and Stephens, R. 2003 Phys. Rev. Lett. 91, 125004.
[14]Buffechoux, S., Psikal, J., Nakatsutsumi, M., Romagnani, L., Andreev, A., Zeil, K., Amin, M., Antici, P., Burris-Mog, T., Compant-La-Fontaine, A., et al. 2010 Phys. Rev. Lett. 105, 015005.
[15]Toncian, T., Borghesi, M., Fuchs, J., d'Humières, E., Antici, P., Audebert, P., Brambrink, E., Cecchetti, C., Pipahl, A., Romagnani, L., et al. , 2006 Science 312, 410.
[16]Stolterfoht, N., Bremer, J.-H., Hoffmann, V., Hellhammer, R., Fink, D., Petrov, A. and Sulik, B. 2002 Phys. Rev. Lett. 88, 133201.
[17]Wu, S. Z., Zhou, C. T. and Zhu, S. P. 2010. Phys. Plasmas 17, 063103.
[18]Cai, H. B., Zhu, S. P., He, X. T., Wu, S. Z. and Chen, M. 2011 Phys. Plasmas 18, 023106.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed