Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T21:11:00.350Z Has data issue: false hasContentIssue false

Characteristics of the runaway electron beam instability in the HT-7 tokamak

Published online by Cambridge University Press:  01 October 2009

Z. Y. CHEN
Affiliation:
Department of Physics, Yunnan Normal University, Kunming 650092, People's Republic of China Key Laboratory of Advanced Technology and Manufacture for Renewable Energy Material, Ministry of Education, Kunming 650092, People's Republic of China (chenzy1003@163.com)
J. X. ZHU
Affiliation:
Department of Physics, Yunnan Normal University, Kunming 650092, People's Republic of China
H. J. JU
Affiliation:
Department of Physics, Yunnan Normal University, Kunming 650092, People's Republic of China
Q. DU
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
Y. J. SHI
Affiliation:
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
H. F. LIANG
Affiliation:
Department of Physics, Yunnan Normal University, Kunming 650092, People's Republic of China
M. LI
Affiliation:
Department of Physics, Yunnan Normal University, Kunming 650092, People's Republic of China
W. D. CAI
Affiliation:
Department of Physics, Yunnan Normal University, Kunming 650092, People's Republic of China

Abstract

Runaway electron ream instabilities have been observed in Ohmic plasmas in the HT-7 tokamak. The instability regime is characterized by relaxations in the electron cyclotron emission due to the relativistic anomalous Doppler resonance effect which transfers energy from parallel to perpendicular motion. Two types of instabilities in the slide-away regime have been observed in the HT-7 tokamak. The scaling of the threshold value for the instabilities to occur has been derived. It is found that the threshold value is linearly dependent on the plasma current and independent of the toroidal magnetic field strength.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Knoepfel, H. and Spong, D. A. 1979 Nucl. Fusion 19, 785.CrossRefGoogle Scholar
[2]Kadomtsev, B. B. 1967 Zh. Ehksp. Teor. Fiz. 53, 2025.Google Scholar
[3]Parail, V. V. and Pogutse, O. P. 1978 Nucl. Fusion 18, 303.CrossRefGoogle Scholar
[4]Equipe, T. F. R. 1976 Nucl. Fusion 16, 473.CrossRefGoogle Scholar
[5]Chen, Z. Y., Wan, B. N., Ling, B. L., Gao, X., Du, Q., Ti Ang Lin, S. Y., Sajjad, S. and HT-7 Team. 2007 Chin. Phys. Lett. 24, 3195.CrossRefGoogle Scholar
[6]Wu, C. S. and Qiu, X. M. 1983 J. Geophys. Res. 88, 10072.CrossRefGoogle Scholar
[7]Martin-Solis, J. R., Sanchez, R. and Esposito, B. 2002 Phys. Plasmas 9, 1667.CrossRefGoogle Scholar
[8]Brossier, P. 1978 Nucl. Fusion 18, 1069.CrossRefGoogle Scholar
[9]Vlasenkov, V. S., Leonov, V. M., Merezhkin, B. V. and Muakhovatov, V. S. 1973 Nucl. Fusion 13, 509.CrossRefGoogle Scholar
[10]Vlikaev, A. V. and Pogutse, O. P. 1975 Sov. J. Plasma Phys. 1, 303.Google Scholar
[11]Oomens, A. A. M., Ornstein, L. Th. M., Parker, R. R., Schüller, F. C. and Taylor, R. J. 1976 Phys. Rev. Lett. 36, 255.CrossRefGoogle Scholar
[12]Fussmann, G., Campbell, D., Eberhagenet, A. et al. 1981 Phys. Rev. Lett. 47, 1004.CrossRefGoogle Scholar
[13]Wan, B. N., Shi, Y. J., Xu, G. X. et al. 2004 Nucl. Fusion 44, 400.CrossRefGoogle Scholar
[14]Laurent, L. and Rax, J. M. 1990 Europhys. Lett. 11, 219.CrossRefGoogle Scholar
[15]Kurzan, B., Steuer, K. H. and Fussmann, G. 1995 Phys. Rev. Lett. 75, 4626.CrossRefGoogle Scholar
[16]Chen, Z. Y., Wan, B. N., Lin, S. Y., Shi, Y. J. and Hu, L. Q. 2006 Phys. Lett. A 351, 413.CrossRefGoogle Scholar