Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-16T02:00:56.454Z Has data issue: false hasContentIssue false

Semi-analytical modelling of non-local ion-cyclotron resonance heating in toroidal geometry

Published online by Cambridge University Press:  13 March 2009

D. van Eester
Affiliation:
Laboratorium voor Plasmafysica/Laboratoire de Physique des Plasmas, Associatie ‘Eu ratoni–Belgisehe Staat’/Association ‘Euratom–Etat Beige’ Koninklijke Militaire School/Ecole Royale Militaire 1040 Brussels, Belgium

Abstract

A semi-analytical approach is proposed for computing the non-local response of a toroidal plasma to an electromagnetic perturbation. Although the perturbed distribution function as well as the absorbed power are also computed, the focus is on the associated quasi-linear diffusion operator. Different decorrelation models allow one to recapture the well-known ideal collisionless plasma result where the wave–particle energy exchange is exactly at resonance, as well as the more realistic plasma response where the interaction region is widened. The choice of the independent variables also allows one to carry out all computations except the integration of the guiding-centre motion analytically.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. Dover, New York.Google Scholar
Balescu, R. 1988 Transport Processes in Plasmas. Vol. I: Classical Transport. North-Holland, Amsterdam.Google Scholar
Bécoulet, A., Fraboulet, D., Giruzzi, G., Moreau, D., Saoutic, B. & Chinardet, J. 1994 Phys. Piasas 1, 2908.Google Scholar
Bécoulet, A., Gambier, D.J. & Samain, A. 1991 Phys. Fluids B 3, 137.CrossRefGoogle Scholar
Belikov, V. S. & Kolesnichenko, Y. I. 1982 Plasma Phys. 24, 61.CrossRefGoogle Scholar
Belikov, V. S. & Kolesnichenko, Y. I. 1994 Plasma Phys. Contr. Fusion 36, 1703.CrossRefGoogle Scholar
Carrier, G. F., Krook, M. & Pearson, C. E. 1966 Functions of a Complex Variable. McGraw-Hill, New York.Google Scholar
Faulconer, D. & Liboff, R. 1972 Phys. Fluids 15, 1831.CrossRefGoogle Scholar
Faulconer, P. W. & Evrard, M. P. 1991 Proceedings of 18th EPS Conference on Controlled Fusion and Plasma Physics, Vol. 15C (ed. Bachrnann, P. & Robinson, D. C.), p. III297.Google Scholar
Faulconer, P. W. & Evrard, M. P. 1993 LPP–ERM/KMS Laboratory Report 99.Google Scholar
Gambier, D. J. & Samain, A. 1985 Nuci. Fusion 25, 283.CrossRefGoogle Scholar
Jaeger, E. F., Batchelor, P. B., Carter, M. D. & Weitzner, H. 1990 Nucl. Fusion 30, 505.CrossRefGoogle Scholar
Kasilov, S. V., Pyatak, A. I. & Sterpanov, K. N. 1990 Nucl. Fusion 30, 2467.CrossRefGoogle Scholar
Kaufman, A. N. 1972 Phys. Fluids 15, 1063.CrossRefGoogle Scholar
Lamalle, P. U. 1993 Phys. Lett 175A, 45.CrossRefGoogle Scholar
Lamalle, P. U. 1994 Généralisation théorique non locale et étude numérique tridimensionelle du couplage dˇune antenne ICRH à un plasma de tokamak. PhD thesis, Universié de Mons; LPP-ERM/KMS Laboratory Report 101.Google Scholar
Lamalle, P. U. & Louis, Y. 1995 To be published.Google Scholar
Mynick, H. E. 1988 J. Plasma Phys. 39, 303.CrossRefGoogle Scholar
Mynick, H. E. 1990 Nucl. Fusion 30, 357.CrossRefGoogle Scholar
Mynick, H. E. & Duvall, R. E. 1989 Phys. Fluids B 1, 750.CrossRefGoogle Scholar
Romero, H. & Scharer, J. 1987 Nucl. Fusion 27, 363.CrossRefGoogle Scholar
Smithe, D., Colestock, P., Kammash, T. & Kashuba, R. 1988 Phys. Rev. Lett. 60, 801.CrossRefGoogle Scholar
Stix, T. H. 1975 Nucl. Fusion 15, 737.CrossRefGoogle Scholar
Vaclavik, J. & Appert, K. 1987 Plasma Phys. Contr. Fusion 29, 257.CrossRefGoogle Scholar
Wrede, R. C. 1963 An Introduction to Vector and Tensor Analysis. Wiley.Google Scholar