Skip to main content Accessibility help
×
Home

Plasma immersion ion implantation characteristics with q-nonextensive electron velocity distribution

Published online by Cambridge University Press:  20 January 2015


N. Navab Safa
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983963113, Iran
H. Ghomi
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983963113, Iran
A. R. Niknam
Affiliation:
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, 1983963113, Iran
Corresponding
E-mail address:

Abstract

The plasma immersion ion implantation process is investigated in the presence of q–nonextensive electrons by using a one-dimensional fluid model. The effect of the nonextensivity parameter, q, on the plasma parameters and sheath dynamics during the implantation process is studied. The results show that the implantation dose can be enhanced in the presence of energetic electrons at the tail of the distribution function. Different parameters of plasma such as sheath thickness, ion velocity and ion density show more change at the larger values of the q–parameter. Furthermore, the results of simulation tend to what is predicted by the Maxwellian electron distribution function (q = 1).


Type
Research Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below.

References

Amour, R. and Tribeche, M. 2010 Variable charge dust acoustic solitary waves in a dusty plasma with a q-nonextensive electron velocity distribution. Phys. Plasmas 17, 35333539.CrossRefGoogle Scholar
Anders, A. 2000 Handbook of Plasma Immersion Ion Implantation and Deposition, New York: Wiley.Google Scholar
Anders, A. 2001 Width, structure and stability of sheaths in metal plasma immersion ion implantation and deposition: measurements and analytical considerations. Surf. Coat. Technol. 136, 8592.CrossRefGoogle Scholar
Blessington, J., Adams, S., Demidov, V. and Williamson, J. 2009 Effect of energetic electrons on near-wall sheath voltage in the cathode region of a cold cathode direct current discharge. Phys. Plasmas 16, 104,501.CrossRefGoogle Scholar
Chen, L., Jin, D., Tan, X., Dai, J., Cheng, L. and Hu, S. 2010 Time and space resolved Langmuir probe measurements of a pulsed vacuum arc plasma. Vacuum 85, 622626.CrossRefGoogle Scholar
Chu, P. K. 2003 Semiconductor applications of plasma immersion ion implantation. Plasma Phys. Control Fusion 45, 555570.CrossRefGoogle Scholar
Collins, G., Hutchings, R., Tendys, J. and Samandi, M. 1994 Advanced surface treatments by plasma ion implantation. Surf. Coat. Technol. 68, 285293.CrossRefGoogle Scholar
Conrad, J., Dodd, R., Worzala, F. and Qiu, X. 1988 Plasma source ion implantation: a new, cost-effective, non-line-of-sight technique for ion implantation of materials. Surf. Coat. Technol. 36, 927937.CrossRefGoogle Scholar
Daniels, K. E., Beck, C. and Bodenschatz, E. 2004 Anomalous distributions, nonlinear dynamics and nonextensivity. Physica D 193 208.CrossRefGoogle Scholar
DeJoseph, C. Jr, Demidov, V. and Kudryavtsev, A. 2007 Nonlocal effects in a bounded low-temperature plasma with fast electrons. Phys. Plasmas 14, 057,101.CrossRefGoogle Scholar
Demidov, V., DeJoseph, C. Jr and Kudryavtsev, A. 2005 Anomalously high near-wall sheath potential drop in a plasma with nonlocal fast electrons. Phys. Rev. Lett. 95, 215,002.CrossRefGoogle Scholar
Demidov, V., DeJoseph, C. and Kudryavtsev, A. 2006 Nonlocal effects in a bounded afterglow plasma with fast electrons. IEEE Trans. Plasma Sci. 34, 825833.CrossRefGoogle Scholar
Demokan, O. and Filiz, Y. 2003 Ion-matrix sheaths related to planar targets with semicylindrical grooves. J. Appl. Phys. 93, 8387.CrossRefGoogle Scholar
Du, J. 2004 Nonextensivity in nonequilibrium plasma systems with Coulombian long-range interactions. Phys. Lett. A 329, 262267.CrossRefGoogle Scholar
Du, J. 2006 Test of nonextensive statistical mechanics by solar sound speeds. Europhys. Lett. 75, 861.CrossRefGoogle Scholar
Emmert, G. 1994 Model for expanding sheaths and surface charging at dielectric surfaces during plasma source ion implantation. J. Vac. Sci. Technol. B 12, 880883.CrossRefGoogle Scholar
Eslami, P., Mottaghizadeh, M. and Pakzad, H. R. 2011 Nonplanar ion-acoustic solitary waves in electronpositronion plasmas with electrons following a q-nonextensive distribution. Phys. Scr. 83, 065,502.CrossRefGoogle Scholar
Godyak, V. 2005 Hot plasma effects in gas discharge plasma. Phys. Plasmas 12, 055,501.CrossRefGoogle Scholar
Godyak, V., Piejak, R. and Alexandrovich, B. 2002 Electron energy distribution function measurements and plasma parameters in inductively coupled argon plasma. Plasma Sources Sci. Technol. 11, 525.CrossRefGoogle Scholar
Godyak, V. A., Meytlis, V. P. and Strauss, H. R. 1995 Tonks-Langmuir problem for a bi-Maxwellian plasma. IEEE Trans. Plasma Sci. 23, 728734.CrossRefGoogle Scholar
Gong, Y., Wang, X., Duan, P., Yu, J. and Wang, D. 2005 Numerical studies of collisionless and collisional sheath evolution in plasma source ion implantations. Phys. Plasmas 12, 043,501.CrossRefGoogle Scholar
Gougam, L. A. and Tribeche, M. 2011 Debye shielding in a nonextensive plasma. Phys. Plasmas 18, 062,102.CrossRefGoogle Scholar
Gurovich, V. T., Gleizer, J., Bliokh, Y. and Krasik, Y. E. 2006 Potential distribution in an ion sheath of non-Maxwellian plasma. Phys. Plasmas 13, 073,506.CrossRefGoogle Scholar
Gyergyek, T. and Cercek, M. 2005 Fluid model of a sheath formed in front of an electron emitting electrode immersed in a plasma with two electron temperatures. Contrib. Plasma Phys. 45, 89110.CrossRefGoogle Scholar
Gyergyek, T., Juri-Zlobec, B. and Arek, M. 2008 Potential formation in a one-dimensional bounded plasma system containing a two-electron temperature plasma: Kinetic model and PIC simulation. Phys. Plasmas 15, 063,501.CrossRefGoogle Scholar
Hori, T., Bowden, M., Uchino, K. and Muraoka, K. 1996 Measurement of nonMaxwellian electron energy distributions in an inductively coupled plasma. Appl. Phys. Lett. 69, 36833685.CrossRefGoogle Scholar
Keiter, E., Hitchon, W. and Goeckner, M. 1994 A kinetic model of pulsed sheaths. Phys. Plasmas 1, 37093712.CrossRefGoogle Scholar
Khoramabadi, M., Ghomi, H. and Ghoranneviss, M. 2009 Effects of ion temperature on collisional DC sheath in plasma ion implantation. J. Plasma Fusion Res. Ser. 8, 13991402.Google Scholar
Kostov, K., Barroso, J. and Ueda, M. 2007 Numerical simulation of magnetic field enhanced plasma immersion ion implantation. Surf. Coat. Technol. 201, 83988402.CrossRefGoogle Scholar
Kostov, K., Ueda, M., Lepiensky, M., Soares, P. Jr, Gomes, G., Silva, M. and Reuther, H. 2004 Surface modification of metal alloys by plasma immersion ion implantation and subsequent plasma nitriding. Surf. Coat. Technol. 186, 204208.CrossRefGoogle Scholar
Kushner, M. 1985 Floating sheath potentials in non-Maxwellian plasmas. IEEE Trans. Plasma Sci. 13, 69.CrossRefGoogle Scholar
Kwok, D.T.-K. 2006 Numerical simulation of metal plasma immersion ion implantation and deposition on a dielectric wedge. IEEE Trans. Plasma Sci. 34, 10591065.CrossRefGoogle Scholar
Le Coeur, F., Pelletier, J., Arnal, Y. and Lacoste, A. 2000 Ion implantation by plasma immersion: interest, limitations and perspectives. Surf. Coat. Technol. 125, 7178.CrossRefGoogle Scholar
Leubner, M. 2004 Fundamental issues on kappa-distributions in space plasmas and interplanetary proton distributions. Phys. Plasmas 11, 13081316.CrossRefGoogle Scholar
Li, H. 2006. Measurements of electron energy distribution function and neutral gas temperature in an inductively coupled plasma. Master's thesis, University of Saskatchewan.Google Scholar
Li, X.-C. and Wang, Y.-N. 2007a Effect of pulse rise time on charging effects in plasma immersion ion implantation with dielectric substrates with planar and cylindrical geometries. Surf. Coat. Technol. 201, 65696572.CrossRefGoogle Scholar
Li, X.-C. and Wang, Y.-N. 2007b Two-dimensional fluid model of pulse sheath in plasma immersion ion implantation with dielectric substrates. IEEE Trans. Plasma Sci. 35, 14891495.CrossRefGoogle Scholar
Lieberman, M. A. and Lichtenberg, A. J. 2005. Principles of Plasma Discharges and Materials Processing, 2nd edn.New York: Wiley.CrossRefGoogle Scholar
Lima, J., Bezerra, J. and Silva, R. 2002 Conservative force fields in nonextensive kinetic theory. Physica A 316, 289296.CrossRefGoogle Scholar
Lima, J. A. S., Silva, R. and Plastino, A. R. 2001 Nonextensive thermostatistics and the H-theorem. Phys. Rev. Lett. 86, 2938.CrossRefGoogle ScholarPubMed
Linder, B. P. and Cheung, N. W. 1996 Plasma immersion ion implantation with dielectric substrates. IEEE Trans. Plasma Sci. 24, 13831388.CrossRefGoogle Scholar
Liu, B. and Goree, J. 2008 Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma. Phys. Rev. Lett. 100, 055,003.CrossRefGoogle Scholar
Liu, C. and Wang, D. 2002 Ion dynamics of pulsed plasma source ion implantation in the sheath of a hemispherical bowl-shaped target. Surf. Coat. Technol. 171, 119123.CrossRefGoogle Scholar
Liu, D., Wang, D., Wang, X. and Liu, J. 2001 Charging effects on temporal and spatial evolution of the dusty plasma sheath in plasma source ion implantation. Phys. Plasmas 8, 14271431.CrossRefGoogle Scholar
Liu, J., De Groot, J., Matte, J., Johnston, T. and Drake, R. 1994 Measurements of inverse bremsstrahlung absorption and non-Maxwellian electron velocity distributions. Phys. Rev. Lett. 72, 27172720.CrossRefGoogle ScholarPubMed
Livadiotis, G. and McComas, D. 2009 Beyond kappa distributions: exploiting Tsallis statistical mechanics in space plasmas. J. Geophys. Res. 114 A11,105.CrossRefGoogle Scholar
Mariz, A. M. 1992 On the irreversible nature of the Tsallis and Renyi entropies. Phys. Lett. A 165, 409.CrossRefGoogle Scholar
Marques, L., Andrade-II, E. and Deppman, A. 2013 Nonextensivity of hadronic systems. Phys. Rev. D 87, 114,022.CrossRefGoogle Scholar
Pakzad, H. R. 2011 Effect of q-nonextensive distribution of electrons on ion acoustic shock waves in dissipative plasma. Astrophys. Space Sci. 334, 5560.CrossRefGoogle Scholar
Pelletier, J. and Anders, A. 2005 Plasma-based ion implantation and deposition: a review of physics, technology, and applications. IEEE Trans. Plasma Sci. 33, 19441959.CrossRefGoogle Scholar
Qian, X., Cheung, N., Lieberman, M., Felch, S., Brennan, R. and Current, M. 1991 Plasma immersion ion implantation of SiF 4 and BF 3 for sub100 nm P+N junction fabrication. Appl. Phys. Lett. 59, 348350.CrossRefGoogle Scholar
Ramshaw, J. D. 1993 H-theorems for the Tsallis and Renyi entropies. Phys.Lett. A 175, 169.CrossRefGoogle Scholar
Sadiku, M. N. O. 2000. Numerical Techniques in Electrodynamics, Boca Raton, Fla: CRC Press.Google Scholar
Segre, S. and Pieroni, L. 1975 Measurement of non-maxwellian electron distribution functions in hot plasma and the importance for Thomson scattering diagnostics. Phys. Lett. A 51, 2526.CrossRefGoogle Scholar
Sharifian, M. and Shokri, B. 2007 Dynamic simulation of the ion sheath in the presence of fast monoenergetic electrons. Phys. Plasmas 14, 093,503.CrossRefGoogle Scholar
Sharifian, M. and Shokri, B. 2008 Effects of fast monoenergetic electrons on the ion dynamics near the cathode in a pulsed direct current plasma sheath. Phys. Plasmas 15, 033,503.CrossRefGoogle Scholar
Sheridan, T. 1999 A model of plasma-based ion implantation around a round hole in a flat plate. J. Phys. D: Appl. Phys. 32, 886890.CrossRefGoogle Scholar
Shiraishi, K., Ohno, N., Uesugi, Y. and Takamura, S. 1992 Sheath formation on carbon and refractory metals in a plasma with energetic electrons. J. Nucl. Mater. 196, 745749.CrossRefGoogle Scholar
Shiraishi, K. and Takamura, S. 1990 Sheath formation in the SOL plasma with energetic electrons. J. Nucl. Mater. 176, 251255.CrossRefGoogle Scholar
Silva, R. Jr, Plastino, A. and Lima, J. 1998 A Maxwellian path to the q–nonextensive velocity distribution function. Phys. Lett. A 249, 401408.CrossRefGoogle Scholar
Stewart, R. and Lieberman, M. A. 1991 Model of plasma immersion ion implantation for voltage pulses with finite rise and fall times. J. Appl. Phys. 70, 34813487.CrossRefGoogle Scholar
Tang, Z., Xu, Y., Ruan, L., van Buren, G., Wang, F. and Xu, Z. 2009 Spectra and radial flow in relativistic heavy ion collisions with Tsallis statistics in a blast-wave description. Phys. Rev. C 79, 051,901.CrossRefGoogle Scholar
Tian, X., Fu, R. K., Chen, J., Chu, P. K. and Brown, I. G. 2002 Charging of dielectric substrate materials during plasma immersion ion implantation. Nucl. Instrum. Methods B 187, 485491.CrossRefGoogle Scholar
Tribeche, M., Amour, R. and Shukla, P. 2012 Ion acoustic solitary waves in a plasma with nonthermal electrons featuring Tsallis distribution. Phys. Rev. E 85, 037,401.CrossRefGoogle Scholar
Tribeche, M., Djebarni, L. and Amour, R. 2010 Ion-acoustic solitary waves in a plasma with a q-nonextensive electron velocity distribution. Phys. Plasmas 17, 2114.Google Scholar
Tribeche, M. and Shukla, P. K. 2011 Charging of a dust particle in a plasma with a non extensive electron distribution function. Phys. Plasmas 18, 103,702.CrossRefGoogle Scholar
Tsallis, C. 2004 What should a statistical mechanics satisfy to reflect nature? Physica D 193, 334.CrossRefGoogle Scholar
Tsallis, C. 2009. Inruduction to Nonectensive Statistical Mechanics, New Mexico: Springer.Google ScholarPubMed
Tsallis, C., Mendes, R. and Plastino, A. R. 1998 The role of constraints within generalized nonextensive statistics. Physica A 261, 534554.CrossRefGoogle Scholar
Tsallis, C., Rapisarda, A., Pluchino, A. and Borges, E. P. 2007 On the non-Boltzmannian nature of quasi-stationary states in long-range interacting systems. Physica A 381, 143147.CrossRefGoogle Scholar
Varela, L., Carrete, J., Muoz-Sol, R., Rodrguez, J. and Gallego, J.Nonextensive statistical mechanics of ionic solutions. Phys. Lett. A 370, 405412.CrossRefGoogle Scholar
Wang, J., Zhang, G., Wang, Y., Liu, Y., Liu, C. and Yang, S. 2004 Simulation methods of ion sheath dynamics in plasma source ion implantation. Chin. Sci. Bull. 49, 757765.CrossRefGoogle Scholar
Zeng, X., Kwok, T.-K., Liu, A., Chu, P. K., Tang, B. and Sheridan, T. E. 1998 Plasma-immersion ion implantation of the interior surface of a small cylindrical bore using an auxiliary electrode for finite rise-time voltage pulses. IEEE Trans. Plasma Sci. 26, 175180.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 15 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 30th November 2020. This data will be updated every 24 hours.

Hostname: page-component-8465588854-sjrn6 Total loading time: 0.519 Render date: 2020-11-30T12:54:21.936Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Nov 30 2020 12:01:19 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Plasma immersion ion implantation characteristics with q-nonextensive electron velocity distribution
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Plasma immersion ion implantation characteristics with q-nonextensive electron velocity distribution
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Plasma immersion ion implantation characteristics with q-nonextensive electron velocity distribution
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *