Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T00:32:08.909Z Has data issue: false hasContentIssue false

Anomalous transport and anomalous heating due to lower-hybrid wave fields

Published online by Cambridge University Press:  13 March 2009

M. Krämer
Affiliation:
Institut für Experimentalphysik II, Ruhr-Universität Bochum, Federal Republic ofGermany
N. Sollich
Affiliation:
Institut für Experimentalphysik II, Ruhr-Universität Bochum, Federal Republic ofGermany
J. Dietrich
Affiliation:
Institut für Experimentalphysik II, Ruhr-Universität Bochum, Federal Republic ofGermany

Extract

The microscopic and macroscopic behaviours of a linear reflex discharge in the presence of low-frequency turbulence are investigated under the action of moderate lower-hybrid wave power. The frequency and wavenumber spectra of both the low-frequency fluctuations and the high-frequency waves are measured using a correlation-analysis technique with two probes. The low-frequency fluctuations may be attributed to drift-wave turbulence. The fluctuation level is raised when RF power is coupled to the plasma, thus leading to considerably enhanced radial transport. The coupling between low-frequency fluctuations and high-frequency waves can be seen clearly from the spectra. The high-frequency wavenumber spectra measured inside the antenna are in reasonable agreement with the lower-hybrid wave dispersion. However, the wavenumbers observed in the lower-hybrid resonance region outside the antenna are – in contrast with expectation – not larger than in the plasma edge region. From the electric-field energy-density spectra and from measurements of the density and the temperatures, a detailed energy balance can be performed. The calculated heating rates are anomalously large for both the electrons and the ions. The absorption processes, relevant for the present experiment, are discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abarbanel, H. D. I., Grebogi, C. & Kaufman, A. N. 1980 Bull. Am. Phys. Soc. 25, 988.Google Scholar
Anderegg, F., Stern, R. A., Skiff, F., Hammel, B. A., Tran, M. Q., Paris, P. J. & Kohler, P. 1986 Phys. Rev. Lett. 57, 329.CrossRefGoogle Scholar
Baldwin, D. E. & Rowlands, G. 1966 Phys. Fluids, 9, 2444.CrossRefGoogle Scholar
Beall, J. M., Kim, Y. C. & Powers, E. J. 1982 J. Appl. Phys. 53, 3933.CrossRefGoogle Scholar
Bellan, P. M. & Porkolab, M. 1976 Phys. Fluids, 19, 995.CrossRefGoogle Scholar
Bellan, P. M. & Wong, K. L. 1978 Phys. Fluids, 21, 592.CrossRefGoogle Scholar
Berger, R. L. & Perkins, F. W. 1976 Phys. Fluids, 19, 406.CrossRefGoogle Scholar
Briggs, P. J. & Parker, R. R. 1972 Phys. Rev. Lett. 29, 852.CrossRefGoogle Scholar
Brown, S. C. 1966 Basic Data of Plasma Physics. MIT Press.Google Scholar
Brusati, M., Cima, G., Fontanesi, M. & Sindoni, E. 1974 Nuovo Cimento Lett. 10, 67.CrossRefGoogle Scholar
Chang, R. P. H. & Porkolab, M. 1973 Phys. Rev. Lett. 31, 1241.CrossRefGoogle Scholar
Chang, R. P. H. & Porkolab, M. 1974 Phys. Rev. Lett. 32, 1227.CrossRefGoogle Scholar
Chu, T. K., Bernabei, S. & Motley, R. W. 1973 Phys. Rev. Lett. 31, 211.CrossRefGoogle Scholar
Chu, C., Okuda, H. & Dawson, J. M. 1975 Phys. Fluids, 18, 1762.CrossRefGoogle Scholar
Chu, C., Dawson, J. M. & Okuda, H. 1976 Phys. Fluids, 19, 981.CrossRefGoogle Scholar
Cottingham, W. B. & Buchsbaum, S. J. 1963 Phys. Rev. 130, 1007.Google Scholar
Derra, G. 1986 Dissertation, Ruhr-Universität, Bochum.Google Scholar
Decyk, V. K., Morales, G. J. & Dawson, J. M. 1982 Proceedings of 3rd Joint Varenna-Grenoble International Symposium on Heating in Toroidal Plasmas, vol. 2, p. 517.Google Scholar
Drawin, H. W. 1967 Collisional and transport cross-sections. EUR-CEA-FC-383.Google Scholar
Fried, B. D. & Conte, S. D. 1961 The Plasma Dispersion function. Academic.Google Scholar
Golant, V. E., Zhillinsky, A. P. & Sakharov, I. E. 1980 The Fundamentals of Plasma Physics. Wiley.Google Scholar
Hasegawa, A. & Mima, K. 1978 Phys. Fluids, 21, 87.CrossRefGoogle Scholar
Hsu, J. Y., Matsuda, K., Chu, M. S. & Jensen, T. H. 1979 Phys. Rev. Lett. 43, 203.CrossRefGoogle Scholar
Karney, C. F. F. 1978 Phys. Fluids, 21, 1584.CrossRefGoogle Scholar
Mikhailovskii, A. B. & Pogutse, O. P. 1966 Soviet. Phys. Tech. Phys. 11, 153.Google Scholar
Krämer, M., Lucks, K., Schlüter, H. & Wiesemann, F. 1983 Phys. Lett. 96A, 195.CrossRefGoogle Scholar
Lucks, K. & Krämer, M. 1980 Plasma Phys. 22, 879.CrossRefGoogle Scholar
Ono, M., Wong, K. L. & Wurden, G. A. 1983 Phys. Fluids, 26, 298.CrossRefGoogle Scholar
Ott, E. 1979 Phys. Fluids, 22, 1732.CrossRefGoogle Scholar
Paolini, F. J., Motley, R. W., Hooke, W. M. & Bernabei, S. 1977 Phys. Rev. Lett. 39, 1081.CrossRefGoogle Scholar
Porkolab, M. 1974 Phys. Fluids, 17, 1432.CrossRefGoogle Scholar
Porkolab, M. 1977 Phys. Fluids, 20, 2058.CrossRefGoogle Scholar
Porkolab, M. 1984 IEEE Trans. Plasma Sci. 12, 107.CrossRefGoogle Scholar
Rudakov, L. I. & Sagdeev, R. Z. 1961 Soviet Phys. Dokl. 6, 415.Google Scholar
Schmitz, L., Derra, G., Lüthen, G. & Schlüter, H. 1985 Plasma Phys. 28, 569.Google Scholar
Stix, T. H. 1965 Phys. Rev. Lett. 15, 878.CrossRefGoogle Scholar
Sundaram, A. K. & Kaw, F. K. 1973 Nucl. Fusion, 13, 901.CrossRefGoogle Scholar