Skip to main content Accessibility help
×
Home

Research on Ship Classification Based on Trajectory Features

  • Kai Sheng (a1), Zhong Liu (a1), Dechao Zhou (a1), Ailin He (a1) and Chengxu Feng (a1)...

Abstract

It is important for maritime authorities to effectively classify and identify unknown types of ships in historical trajectory data. This paper uses a logistic regression model to construct a ship classifier by utilising the features extracted from ship trajectories. First of all, three basic movement patterns are proposed according to ship sailing characteristics, with related sub-trajectory partitioning algorithms. Subsequently, three categories of trajectory features with their extraction methods are presented. Finally, a case study on building a model for classifying fishing boats and cargo ships based on real Automatic Identification System (AIS) data is given. Experimental results indicate that the proposed classification method can meet the needs of recognising uncertain types of targets in historical trajectory data, laying a foundation for further research on camouflaged ship identification, behaviour pattern mining, outlier behaviour detection and other applications.

Copyright

Corresponding author

References

Hide All
Aarsæther, K.G. and Moan, T. (2009). Estimating navigation patterns from AIS. Journal of Navigation, 62(4), 587607.
Boukhechba, M., Bouzouane, A., Bouchard, B., Gouinvallerand, C. and Giroux, S. (2015). Online recognition of people's activities from raw GPS data: semantic trajectory data analysis. ACM International Conference on Pervasive Technologies Related to Assistive Environments, 18.
De Vries, G.K.D. and Van Someren, M. (2012). Machine learning for vessel trajectories using compression, alignments and domain knowledge. Expert Systems with Applications, 39(18), 1342613439.
De Vries, G.K.D. and Van Someren, M. (2014). An analysis of alignment and integral based kernels for machine learning from vessel trajectories. Expert Systems with Applications, 41(16), 75967607.
Dodge, S., Weibel, R. and Forootan, E. (2009). Revealing the physics of movement: comparing the similarity of movement characteristics of different types of moving objects. Computers Environment & Urban Systems, 33(6), 419434.
Elwakdy, M., El-Bendary, M. and Eltokhy, M. (2015). A Novel Trajectories Classification Approach for different types of ships using a Polynomial Function and ANFIS. International Conference on Image Processing, Computer Vision, & Pattern Recognition.
Feng, Z. and Zhu, Y. (2016). A survey on trajectory data mining: techniques and applications. IEEE Access, 4, 1–1.
Harrington, P. (2012). Machine Learning in Action. Manning Publications Co., LTD.
Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning. Springer.
Kotsiantis, S.B. (2007). Supervised machine learning: a review of classification techniques. Informatica, 31(3), 249268.
Lee, J.G., Han, J. and Whang, K.Y. (2007). Trajectory clustering: a partition-and-group framework. ACM SIGMOD International Conference on Management of Data, pp. 593604.
Lee, J.G., Han, J., Li, X. and Gonzalez, H. (2008). TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering. Proceedings of the VLDB Endowment, 1(1), 10811094.
Li, Q., Zheng, Y., Xie, X., Chen, Y., Liu, W. and Ma, W.Y. (2008). Mining user similarity based on location history. ACM Sigspatial International Symposium on Advances in Geographic Information Systems, ACM-GIS 2008, California, USA.
McCauley, D.J., Woods, P., Sullivan, B., Bergman, B. Jablonicky, C., Roan, A., Hirshfield, M., Boerder, K. and Worm, B. (2016). Ending hide and seek at sea. Science, 351(6278), 11481150.
Patel, D. (2013). Incorporating duration and region association information in trajectory classification. Journal of Location Based Services, 7(4), 246271.
Patel, D., Sheng, C., Hsu, W. and Lee, M.L. (2012). Incorporating Duration Information for Trajectory Classification. IEEE International Conference on Data Engineering, 41, 11321143.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V. and Thirion, B. (2012). Scikit-learn: machine learning in python. Journal of Machine Learning Research, 12(10), 28252830.
Schein, A.I. and Ungar, L.H. (2007). Active learning for logistic regression: an evaluation. Machine Learning, 68(3), 235265.
Scikit-learn User Guide. (2017). Logistic Regression. http://scikit-learn.org/stable/modules/linear_model.html#; logsitic-regression. Accessed 11 May 2017.
Silveira, P.A.M., Teixeira, A.P. and Guedes Soares, C. (2013). Use of AIS Data to Characterize Marine Traffic Patterns and Ship Collision Risk off the Coast of Portugal. Journal of Navigation, 66(6), 879898.
Wang, Y., Zheng, Y. and Xue, Y. (2014). Travel time estimation of a path using sparse trajectories. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2534.
Yuan, N.J., Zheng, Y., Zhang, L. and Xie, X. (2013). T-finder: a recommender system for finding passengers and vacant taxis. IEEE Transactions on Knowledge & Data Engineering, 25(10), 23902403.
Zhen, R., Jin, Y., Hu, Q., Shao, Z. and Nikitakos, N. (2017). Maritime Anomaly Detection within Coastal Waters Based on Vessel Trajectory Clustering and Naïve Bayes Classifier. Journal of Navigation. 70(3), 648670.
Zheng, Y. (2015). Trajectory data mining: an overview. ACM Transactions on Intelligent Systems & Technology, 6(3), 141.
Zhou, Z. (2016). Machine Learning (in Chinese). Tsinghua University press.
Zhu, F., Zhang, Y. and Gao, Z. (2012). Research on Ship Behaviors Based on Data Mining (in Chinese). Navigation of China, 35(2), 5054.
Zhu, Y., Zheng, Y., Zhang, L., Santani, D., Xie, X. and Yang, Q. (2011). Inferring taxi status using GPS trajectories. Technical Report MSR-TR-2011-144.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed