Skip to main content Accessibility help
×
Home

Performance Enhancement of Large-Ship Transfer Alignment: A Moving Horizon Approach

  • Dongfang Yang (a1) (a2), Shicheng Wang (a1), Hongbo Li (a1) (a2), Zhiguo Liu (a1) and Jinsheng Zhang (a1)...

Abstract

In shipborne Transfer Alignment (TA) applications, partial observability is one of the most important factors limiting convergence velocity. This paper proposes a new method of attributing weak observable states and lever-arm variables to a group of constraints in order to improve the observability of TA model. This yields the so-called Constrained Transfer Alignment (CTA) model which is uniformly observable even under zero-manoeuvre conditions. Within this framework, the Moving Horizon Estimation (MHE) and its stability analysis are also addressed. Finally, comparative simulation results are given to demonstrate the advantages of the proposed approach.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Performance Enhancement of Large-Ship Transfer Alignment: A Moving Horizon Approach
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Performance Enhancement of Large-Ship Transfer Alignment: A Moving Horizon Approach
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Performance Enhancement of Large-Ship Transfer Alignment: A Moving Horizon Approach
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Britting, K. R. (1971). Inertial Navigation System Analysis. New York: Wiley.
Efraim, P. and Mintchev, M. P. (2007a). Observability Analysis for INS Alignment in Horizontal Drilling. IEEE Transaction on Instrumentation and Measurement. 56(5), 19351945.
Efraim, P. and Mintchev, M. P. (2007b). Modeling of Observability During In-Drilling Alignment for Horizontal Directional Drilling. IEEE Transaction on Instrumentation and Measurement. 56(5), 19461954.
Fang, J. C. and Wan, D. J. (1996). A Fast Initial Alignment Method For Strapdown Inertial Navigation System on Stationary Base. IEEE Transaction on Aerospace and Electronic Systems. 32(4), 15011506.
Goodwin, G. C. and Hernan, H. (2004). A Moving Horizon Approach to Networked Control System Design. IEEE Transcation on Automatic Control. 49(9), 14271445.
Groves, P. D. (2003). Optimising the Transfer Alignment of Weapon INS, The Journal of Navigation. 56, 323335.
Ham, F. M. and Brown, F. G. (1983). Observability, Eigenvalues and Kalman Filtering. IEEE Transaction on Aerospace and Electronic Systems. 19(2), 269274.
Hong, S., Chun, H. H., Kwon, S. H. and Lee, M. H. (2008). Observability Measures and their Application to GPS/INS. IEEE Transaction on Vehicular Technology. 57(1), 97106.
Itzhack, I. Y. and Porat, B. (1980). Azimuth Observability Enhancement During Inertial Navigation System In-Flight Alignment. Guidance and Control. 3(4), 337344.
Jiang, Y.E. and Lin, Y.P. (1992). Error Estimation of INS Ground Alignment Through Observability Analysis. IEEE Transaction on Aerospace and Electronic Systems. 28(2), 9297.
Kain, J. E. and Cloutier, J. R. (1989). Rapid Transfer Alignment for Tactical Weapon Applications. Proceedings of AIAA Guidance, Navigation and Control Conference, Boston, MA, US, 12901300.
Keerthi, S. S. and Gilbert, E.G. (1988). Optimal Infinite-Horizon Feedback Laws for a General Class of Constrained Discrete-Time Systems: Stability and Moving-Horizon Approximations. Journal of Optimal Theory and Applications. 57, 265293.
Kevin, J. S. and William, R. G. (1998). F-16 Flight Test for Rapid Transfer Alignment Procedure. Proceedings of IEEE Position Location and Navigation Symposium, Palm Springs, CA, 379386.
Lee, M. H., Lee, J. H., Koh, Y. H., Park, H. G., Moon, J. H. and Hong, S. P. (2010). Observability and Estimability Analysis of the GPS and INS in the Vehicle. Journal of Mechanical Systems for Transportation and Logistics. 3(3), 537551.
Meskin, C. D. and Itzhack, I. Y. (1992a). Observability Analysis of Piece-Wise Constant Systems – Part I: Theory. IEEE Transaction on Aerospace and Electronic Systems. 28(4), 10561067.
Meskin, D. G. and Itzhack, I. Y. (1992b). Observability Analysis of Piece-Wise Constant Systems - Part2: Application to Inertial Navigation In-Flight Alignment. IEEE Transaction on Aerospace and Electronic systems. 28(4), 10681075.
Muske, K. R. and Rawlings, J. B. (1993). Receding Horizon Recursive State Estimation. Proceedings of the American Control Conference, San Francisco, California, 900904.
Pitman, G. R. (1962). Inertial Guidance. New York: Wiley.
Porat, B. and Itzhack, I. Y. (1981). Effect of Acceleration Switching During INS In-Flight Alignment. Journal of Guidance and Control. 4(4), 385389.
Rao, C. V. (2000). Moving Horizon Strategies for the Constrained Monitoring and Control of Nonlinear Discrete-Time Systems. PhD thesis, University of Wisconsin-Madison.
Rao, C. V., Rawlings, J. B. and Mayne, D. Q. (2003). Constrained State Estimation For Nonlinear Discrete-Time Systems: Stability and Moving Horizon Approximations. IEEE Transaction on Automatic Control. 48(2), 246258.
Rhee, I., Abdel, M. F. and Speyer, J. L. (2004). Observability of an Integrated GPS/INS During Maneuvers. IEEE Transaction on Aerospace and Electronic systems. 40(2), 526535.
Rogers, R. M. (2002). Correlation and Convergence of Inertial Navigation System Error Models. Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibition, Monterey California. AIAA 2002-4946, 1–11.
Ross, C. C. and Elbert, T. F. (1994). A Transfer Alignment Algorithm Study Based on Actual Flight Test Data from a Tactical Air-To-Ground Weapon Launch. Proceedings of IEEE Position Location and Navigation Symposium, 431438.
Simon, D. (2010). Kalman Filtering with State Constraints: a Survey Of Linear And Nonlinear Algorithms. IET Control Theory and Applications. 4(8), 13031318.
Sun, C. Y. and Deng, Z. L. (2009). Transfer Alignment of Shipborne Inertial-Guided Weapon Systems. Journal of Systems Engineering and Electronics. 20(2), 348353.
Titterton, D. H. and Farnborough, R. E. (1990). The Alignment of Ship Launched Missile Inertial Navigation Systems. Proceedings of IEEE Inertial Navigation Sensor Development Colloquium, London, 1116.
Wendel, J., Jurgen, M. and Gert, F. T. (2004). Rapid Transfer Alignment in the Presence of Time Correlated Measurement and System Noise. Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibition, Providence, Rhode Island, 112.
Yi, G. Q. (1987). Principles of Inertial Navigation. Beijing. Aviation Industry Press.

Keywords

Related content

Powered by UNSILO

Performance Enhancement of Large-Ship Transfer Alignment: A Moving Horizon Approach

  • Dongfang Yang (a1) (a2), Shicheng Wang (a1), Hongbo Li (a1) (a2), Zhiguo Liu (a1) and Jinsheng Zhang (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.