Skip to main content Accessibility help

Orbit Determination Using Pulsar Timing Data and Orientation Vector

  • Hua Zhang (a1), Rong Jiao (a2) and Luping Xu (a1)


X-ray Pulsar Navigation (XPNAV) uses the Time Difference of Arrival (TDOA) of the pulsar signal between the spacecraft and Solar System Barycentre (SSB) to determine position. In this paper, a novel method to improve the performance of XPNAV via exploiting the pulsar position vector is proposed. First, the field of view of the collimator is utilised to find the pulsar orientation direction. Then, a searching strategy based on the modified Powell method under given coordinate frames is proposed. We also mathematically prove the existence of the extreme value of the searching strategy. Subsequently, an observation model based on the pulsar radiation vector is presented and applied to formulate the observation function together with pulsar time transfer function. Finally, an Adaptive Divided Difference Filter (ADDF) algorithm is introduced to iteratively estimate the position and velocity of the spacecraft. Numerical simulations show that the vector searching method is feasible and the pulsar radiation direction can improve the navigation performance by 75%. The simulation results also show that the ADDF performs better than Unscented Kalman Filtering (UKF) and DDF in position estimation.


Corresponding author


Hide All
Bar-Itzhack, I. Y. and Oshman, Y.. (1985). Attitude Determination from Vector Observations: Quatemion Estimation. IEEE Transactions on Aerospace and Electronic Systems, 1, 128136.
Battiti, R. (1992). First- and Second-Order Methods for Leaming: Between Steepest Descent and Newton's Method. NEURAL COMPUTATION, 4, 141166.
Becker, W., Kramer, M., and Sesana, A. (2018). Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection. Space Science Reviews, 214, 30.
Brown, R. G. and Hwang, P. Y. C. (1997). Introduction to random signals and applied Kalman filtering: with MATLAB exercises (4th Edition). John Wiley & Sons, Inc.
Chen, P. T., Speyer, J. L., Bayard, D. S., and Majid, W. A. (2017). Autonomous Navigation Using X-Ray Pulsars and Multirate Processing American Control Conference, 40, 4563–4569.
Deng, X. P., Coles, W., Hobbs, G., Keith, M. J., Manchester, R. N., Shannon, R. M. and Zheng, J. H. (2012). Optimal interpolation and prediction in pulsar timing. Monthly Notices of the Royal Astronomical Society, 424, 244251.
Dey, A., Sadhu, S. and Ghoshal, T. K. (2015). Adaptive divided difference filter for nonlinear systems with non-additive noise. Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology, Hooghly, India.
Graven, P., Collins, J., Sheikh, S., Hanson, J., Ray, P. and Wood, K., (2008). XNAV for deep space navigation. 31st Annual AAS Rocky Mountain Guidance and Control Conference, 131, 349364.
Guo, P., Sun, J., Hu, S. and Xue, J. (2018). Research on navigation of satellite constellation based on an asynchronous observation model using X-ray pulsarAdvances in Space Research, 61, 787798.
Hanson, J. E. (2006). Principles of X-ray Navigation. SLAC-Report-809.
Huang, Z., Li, M., and Shuai, P. (2009). On time transfer in X-ray pulsar navigation. Science in China, 52, 14131419.
Huyer, W. and Neumaier, A. (1999). Global optimization by Multilevel Coordinate Search. Journal of Global optimization, 14, 331355.
Jiao, R., Xu, L. P., Zhang, H. and Li, C. (2016). Augmentation method ofXPNAV in Mars orbit based on Phobos and Deimos observations. Advances in Space Research, 58, 18641878.
Lewis, R. M., Torczon, V. and Trosset, M. W. (2000). Direct search methods: then and now. Journal of Computational and Applied Mathematics, 124, 191207.
Liu, J., Fang, J. C., Yang, Z. H., Kang, Z. W. and Wu, J. (2015). X-ray pulsar/Doppler difference integrated navigation for deep space exploration with unstable solar spectrum. Aerospace Science & Technology, 41, 144150.
Liu, J., Ma, J. and Tian, J. (2010). Pulsar/CNS integrated navigation based on federated UKF. Journal ofSystems Engineering and Electronics, 21, 675681.
Loke, M. H. and Barker, R. D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44, 131152.
Luo, N., Xu, L. P. and Zhang, H. (2012). Method of autonomous celestial navigation based on UKF and information fusion. Chinese Space Science & Technology, 32, 19.
Ma, P., Wang, T., Jiang, F., Mu, J. and Baoyin, H. (2017). Autonomous Navigation of Mars Probes by Single X-ray Pulsar Measurement and Optical Data of Viewing Martian Moons. Journal of Navigation, 70, 1832.
Mitchell, J. W., Hassouneh, M. A., Wintemitz, M. B., Valdez, J. E., Price, S. R., Semper, S. R., Yu, W. H., Arzoumanian, Z., Ray, P. S., Wood, K. S., Litchford, R. J. and Gendreau, K. C., (2015). SEXTANT-station explorer for X-ray timing and navigation technology, AIAA Guidance, Navigation, and Control Conference MGNC 2015-Held at the AIAA SciTech Forum 2015.
Ning, X., Gui, M., Zhang, J., Fang, J. and Liu, G. (2017). Impact of the Pulsar's Direction on CNS/XNAV Integrated Navigation. IEEE Transactions on Aerospace & Electronic Systems, 53, 30433055.
Ning, X., Yang, Y., Gui, M., Wu, W., Fang, J. and Liu, G. (2018). Pulsar navigation using time of arrival (TOA) and time differential TOA (TDTOA). Acta Astronautica, 142, 5763.
Nørgaard, M., Poulsen, N. K. and Ravn, O. (2000). New developments in state estimation for nonlinear systems. Automatica, 36, 16271638.
Powell, M. J. D. (1964). An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer Journal, 7, 155162.
Qiao, L., Liu, J., Zheng, G. L. and Zhi, X. (2009). Augmentation of XNAV System to an Ultraviolet Sensor-Based Satellite Navigation System. IEEE Journal of Selected Topics in Signal Processing, 3, 777785.
Sheikh, S. I. and Pines, D. J. (2006). Recursive Estimation of Spacecraft Position Using X-ray Pulsar Time Arrival Measurements. Navigation, 53, 149166.
Sheikh, S. I., Golshan, A. R., and Pines, D. J. (2007). Absolute and relative position determination using variable celestial X-ray sources. Advances in the Astronautical Sciences, 128, 855874.
Sheikh, S. I., Hellings, R. W. and Matzner, R. A. (2007). High-order pulsar timing for navigation. Navigation. Proceedings of the Annual Meeting-Institute of Navigation, Cambridge, MA, United States.
Sheikh, S. I. (2005). The use of variable celestial X-ray sources for spacecraft navigation. University of Maryland, College Park, United States Maryland.
Takahashi, T., Abe, K., Endo, M., Endo, Y., Ezoe, Y, Fukazawa, Y., Hamaya, M., Hirakuri, S., Hong, S., Horii, M., Inoue, H., Isobe, N., Itoh, T., Iyomoto, N., Kamae, T., Kasama, D., Kataoka, J., Kato, H., Kawaharada, M., Kawano, N., Kawashima, K., Kawasoe, S., Kishishita, T., Kitaguchi, T., Kobayashi, Y., Kokubun, M., Jun'ichi, K., Kouda, M., Kubota, A., Kuroda, Y., Madejski, G., Makishima, K., Masukawa, K., Matsumoto, Y., Mitani, T., Miyawaki, R., Mizuno, T., Mori, K., Mori, M., Murashima, M., Murakami, T., Nakazawa, K., Niko, H., Nomachi, M., Okada, Y., Ohno, M., Oonuki, K., Ota, N., Ozawa, H., Sato, G., Shinoda, S., Sugiho, M., Suzuki, M., Taguchi, K., Takahashi, H., Takahashi, I., Shin'ichiro, T., Ken-Ichi, T., Tamura, T., Tanaka, T., Tanihata, C., Tashiro, M., Terada, Y., Shin'ya, T., Uchiyama, Y, Watanabe, S., Yamaoka, K., Yanagida, T. and Yonetoku, D. (2007). Hard X-Ray Detector (HXD) on Board Suzaku. Publications-Astronomical Society of Japan, 59, S35S51.
Wang, Y. and Zhang, W. (2017). Pulsar phase and Doppler frequency estimation for XNAV using on-orbit epoch folding. IEEE Transactions on Aerospace & Electronic Systems, 52, 22102219.
Wang, Y., Zheng, W. and Zhang, D. (2017). X-ray Pulsar/Starlight Doppler Deeply-integrated Navigation Method. Journal of Navigation, 70, 829846.
Wei, E., Jin, S., Zhang, Q., Liu, J., Li, X., and Yan, W. (2013). Autonomous navigation of Mars probe using X-ray pulsars: Modeling and results. Advances in Space Research, 51, 849857.
Zhang, H. and Xu, L. (2011). An improved phase measurement method of integrated pulse profile for pulsar. Science China Technological Sciences., 54, 22632270.
Zhang, X., Shuai, P., Huang, L., Chen, S. and Xu, L. (2017). Mission Overview and Initial Observation Results of the X-Ray Pulsar Navigation-I Satellite. International Journal of Aerospace Engineering, 2017, 17.
Zhang, X. Y., Shuai, P. and Huang, L. W. (2016). Phase tracking for pulsar navigation with Doppler frequency. Acta Astronautica, 129, 179185.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed