Skip to main content Accessibility help
×
Home

A new Concentric Circles Detection method for Object Detection applied to Radar Images

  • José Miguel Guerrero (a1), Andreas Muñoz (a2), Matilde Santos (a1) and Gonzalo Pajares (a1)

Abstract

In this work, a new concentric circles detection method for object detection is proposed. It has been applied to the images of a commercial radar, captured with a Charge-Coupled Device (CCD) camera. The processing includes the detection of centres and concentric circles in the images and the identification of the radar scale. Several methods found in the literature have been applied and compared with our novel proposal for multiple concentric circles detection, called “Propagation Method based on Circular Regression”. This methodology has been validated with real radar images, proving its efficiency in obtaining the distance of any object to a marine vessel, with high accuracy and low computational cost, in real time. This system can not only be applied to most existing radars in the market by adjusting the parameters of each model but our proposal for concentric circle detection can be also applied to other sensing applications.

Copyright

Corresponding author

(E-mail: jmguerre@ucm.es)

References

Hide All
Akinlar, C., Topal, C. (2013). EDCircles: a real-time circle detector with a false detection control. Pattern Recognition, 46, 725740.10.1016/j.patcog.2012.09.020
Almeida, C., Franco, T., Ferreira, H., Martins, A., Santos, R., Almeida, J.M., Carvalho, J., Silva, E. (2009). Radar based collision detection developments on USV ROAZ II. OCEANS 2009-EUROPE, Bremen, Germany, 16.
Ayala-Ramirez, V., Garcia-Capulin, C., Perez-Garcia, A., Sanchez-Yanez, R. (2006). Circle detection on images using genetic algorithms. Pattern Recognition Letters, 27, 652657.10.1016/j.patrec.2005.10.003
Blaich, M., Köhler, S., Schuster, M., Schuchhardt, T., Reuter, J. and Tietz, T. (2015). Mission integrated collision avoidance for USVs using laser range finder. OCEANS 2015-Genova, 16.
Bole, A., Wall, A. and Norris, A. (2014). Radar and ARPA Manual: Radar, AIS and Target Tracking for Marine Radar Users, Butterworth-Heinemann.
Bone, P. (2010). Hough Transform for circle detection. http://www.mathworks.com/matlabcentral/fileexchange/9833-hough-transform-for-circle-detection. Accessed 21 December 2018.
Bonin-Font, F., Gomila, C. C. and Codina, G. O. (2017). Towards visual navigation of an autonomous underwater vehicle in areas with Posidonia Oceanica. Revista Iberoamericana de Automática e Informática Industrial RIAI, 15(1), 2435.10.4995/riai.2017.8828
Bovcon, B., Perš, J. and Kristan, M. (2018). Stereo obstacle detection for unmanned surface vehicles by IMU-assisted semantic segmentation. Robotics and Autonomous Systems, 104, 113.10.1016/j.robot.2018.02.017
Briechle, K. and Hanebeck, U. D. (2001). Template matching using fast normalized cross correlation. Proceedings of Optical Pattern Recognition XII Volume 4387.10.1117/12.421129
Cao, X. and Deravi, F. (1992). An efficient method for the detection of multiple concentric circles. Proceedings of ICASSP-92:1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, San Francisco, CA, Vol 3, 137–140.10.1109/ICASSP.1992.226257
Chaves, D., Saikia, S., Fernandez-Robles, L., Alegre, E. and Trujillo, M. (2018). A systematic review on object localisation methods in images. Revista Iberoamericana de Automática e Informatica Industrial, 15(3), 231242.10.4995/riai.2018.10229
Chen, X., Lu, L. and Gao, Y. (2012). A new concentric circle detection method based on Hough transform. Proceedings of 7th International Conference on Computer Science & Education (ICCSE), Melbourne, VIC, 753–758.10.1109/ICCSE.2012.6295182
Cuevas, E., Zaldiwar, D., Perez-Cisneros, M. and Ramirez-Ortegon, M. (2010). Circle detection using discrete differential evolution optimization. Pattern Analysis Applications, 14, 93107.10.1007/s10044-010-0183-9
Cuevas, E., Osuna, V. and Oliva, D. (2017). Evolutionary Computation Techniques: A Comparative Perspective. Springer International Publishing. 3565.10.1007/978-3-319-51109-2_3
Frosio, I. and Borghese, N. (2008). Real-time accurate circle fitting with occlusions. Pattern Recognition, 41, 10411055.10.1016/j.patcog.2007.08.011
FURUNO 1715. (2018). https://www.furunousa.com/en/products/1715. Accessed 21 December 2018.
Gupta, S. and Singh, Y. J. (2014). Object detection using shape features. IEEE International Conference Computational Intelligence and Computing Research, Coimbatore, 1–4.10.1109/ICCIC.2014.7238445
Halterman, R. and Brush, M. (2010). Velodyne HDL-64E LIDAR for unmanned surface vehicle obstacle detection. Proceedings of SPIE–The International Society for Optical Engineering, Orlando, United States, 76920D-1-8.10.1117/12.850611
Han, J., Koczy, L. and Poston, T. (1993). Fuzzy Hough transform. Proceedings of the 2nd International Conference on Fuzzy Systems, San Francisco, CA, vol. 2, pp. 803808.10.1109/FUZZY.1993.327545
Heidarsson, H. and Sukhatme, G. (2011). Obstacle detection and avoidance for an autonomous surface vehicle using a profiling sonar. IEEE International Conference on Robotics and Automation, Shanghai, pp. 731736.10.1109/ICRA.2011.5980509
Hough, P. (1962). A method and means for recognizing complex patterns. U.S. Patent Office No 306954.
Illingworth, J. and Kittler, J. (1988). A survey of the Hough transform. Computer vision, graphics, and image processing, 44(1), 87116.10.1016/S0734-189X(88)80033-1
Jiang, G. and Quan, L. (2005). Detection of concentric circles for Camera Calibration. Proceedings of Tenth IEEE International Conference on Computer Vision (ICCV'05), 1, 333–340.10.1109/ICCV.2005.73
Kanan, C. and Cottrell, G. W. (2012). Color-to-grayscale: does the method matter in image recognition? PloS ONE, 7(1), e29740.10.1371/journal.pone.0029740
Kapadia, A. S., Chan, W. and Moyé, L. A. (2017). Mathematical statistics with applications. Boca Raton: CRC Press.10.1201/9781315275864
Lee, S., Kwon, K. and Joh, J. (2004). A fuzzy logic for autonomous navigation of marine vehicles satisfying COLREG guidelines. International Journal of Control, Automation and Systems, 2(2), 171181.
Liu, D., Wang, Y., Tang, Z. and Lu, X. (2014). A robust circle detection algorithm based on top-down least-square fitting analysis. Computers and Electrical Engineering, 40 14151428.10.1016/j.compeleceng.2014.03.011
Logitech. (2018). Logitech C920 Webcam. https://www.logitech.com/es-es/product/hd-pro-webcam-c920. Accessed 21 December 2018.
Muammar, H. and Nixon, M. (1989). Approaches to extending the Hough transform. Proceedings of the International Conference on Acoustics, Speech and Signal Processing ICASSP-89, 15561559.10.1109/ICASSP.1989.266739
Menoyo, J. and Santos, M. (2016). Intelligent rudder control of an unmanned surface vessel. Expert Systems with Applications, 55, 106117.
Nao, Q., Ye, Y., Mo, C., Wu, Y. and Liu, L. (2010). Method for the Detection of Concentric Circles of Photoelectric Image of Circular Hole in Printed Circuit Board. Acta Photonica Sinica, 30, 7578.
Oleynikova, E., Lee, N. B., Barry, A. J. and Holler, J. (2010). Perimeter patrol on autonomous surface vehicles using marine radar. OCEANS, Sydney, Australia, 15.
Onunka, C. and Bright, G. (2010). Autonomous marine craft navigation: On the study of radar obstacle detection. Proceedings of 11th International Conference on Control Automation Robotics & Vision, Singapore, 567572.10.1109/ICARCV.2010.5707239
OpenCV. (2018). https://opencv.org/. Accessed 21 December 2018.
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 6266.10.1109/TSMC.1979.4310076
Pajares, G. and de la Cruz, J.M. (2007). Visión por Computador: Imágenes Digitales y Aplicaciones, RA-MA, Madrid.
Polvara, R., Sharma, S., Wan, J., Manning, A. and Sutton, R. (2018). Obstacle Avoidance Approaches for Autonomous Navigation of Unmanned Surface Vehicles. The Journal of Navigation, 71(1), 241256.10.1017/S0373463317000753
Raspberry Pi Model B. (2018). https://www.raspberrypi.org/products/raspberry-pi-2-model-b/. Accessed 21 December 2018.
Roth, G. and Levine, M. (1994). Geometric primitive extraction using a genetic algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, 901905.10.1109/34.310686
Shaked, D., Yaron, O. and Kiryati, N. (1996). Deriving stopping rules for the probabilistic Hough transform by sequential analysis. Computer Vision Image Understanding, 63, 512526.10.1006/cviu.1996.0038
Silveira, M. (2005). An algorithm for the detection of multiple concentric circles. Pattern Recognition and Image Analysis, 3523, 143224.
Xu, L., Oja, E. and Kultanen, P. (1990). A new curve detection method: randomized Hough transform (RHT). Pattern Recognition Letters, 11, 331338.10.1016/0167-8655(90)90042-Z
Yang, C., Park, J. and Rashid, A. (2018). An improved method of land masking for synthetic aperture radar-based ship detection. Journal of Navigation, 71(4), 788804.10.1017/S037346331800005X
Yuen, H. K., Princen, J., Illingworth, J. and Kittler, J. (1990). Comparative study of Hough transform methods for circle finding. Image and vision computing, 8(1), 7177.10.1016/0262-8856(90)90059-E
Zhuang, J., Zhang, L., Zhao, S., Cao, J., Wang, B. and Sun, H. (2016). Radar-based collision avoidance for unmanned surface vehicles. China Ocean Engineering, 30(6), 867883.10.1007/s13344-016-0056-0

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed