Skip to main content Accessibility help
×
Home

Low Cost, High Accuracy Positioning In Urban Environments

  • Chris Hide (a1), Terry Moore (a1), Chris Hill (a1) and David Park (a1)

Abstract

It is well known that GPS measurements are regularly obstructed in urban environments. Positioning accuracy in such environments is significantly degraded and in many areas, it is not possible to obtain a GPS position fix at all. There are currently two methods that can be used to improve availability in the urban environment. Firstly, GPS receivers can be augmented with dead reckoning sensors such as an INS. Alternatively, High Sensitivity GPS (HSGPS) receivers can be used which are able to acquire and track very weak signals. This paper assesses the performance obtained from a GPS and low cost INS integrated system and a HSGPS receiver in an urban environment in Nottingham, UK. The navigation systems are compared to a high accuracy integrated GPS/INS system which is used to provide a reference trajectory. It is demonstrated that the differential GPS and low cost INS system can provide horizontal positioning accuracy of better than 2·5 m RMS in real-time, and better than 1 m RMS in post-processing, whereas the non-differential HSGPS receiver provides a real-time performance of 5 m RMS. These results were obtained in an environment where, with conventional GPS receivers, a position solution is only available 48·4% of the time. Operational considerations such as initial alignment of the GPS and low cost INS are also discussed when comparing the two systems for urban positioning applications.

Copyright

References

Hide All
Brown, R. B., Hwang, P. Y. C., 1997. Introduction to Random Signals and Applied Kalman Filtering, 3rd Edition. John Wiley and Sons Inc.
Gelb, A. (Ed.), 1974. Applied Optimal Estimation. Analytic Sciences Corporation.
Hide, C., 2003, Integration of GPS and low cost INS measurements, PhD thesis, University of Nottingham, September 2003.
Hide, C., Moore, T., 2005, GPS and Low Cost INS Integration for Positioning in the Urban Environment, In Proceedings of the Institute of Navigation GNSS 2005, Long Beach, CA, September 2005. To be published.
Lachapelle, G., Kuusniemi, H., Dao, D., MacGougan, G., Cannon, M. E., 2003, HSGPS Signal Analysis and Performance Under Various Indoor Conditions. Proceedings of the Institute of Navigation GPS 2003 Portland, Oregan, 9–12 September.
QinetiQ, 2004, The QinetiQ Q20 High Sensitivity GPS Receiver Module Datasheet, Document QINETIQ/FST/I&C/DS044398/1.0, version 1.0.
QinetiQ, 2004, High Sensitivity GPS Receiver Demonstration Kit User Guide, Document QINETIQ/FST/I&C/UG044388/1.0, August 2004.
Shin, E.-H. and El-Sheimy, N., 2002, Optimizing smoothing computation for near real-time GPS measurement gap filling in INS/GPS systems, In Proceedings of the Institute of Navigation GPS 2002.
van Diggelen, F., Abraham, C., 2001, Indoor GPS technology, Presented at CTIA Wireless-Agenda, Dallas, May 2001.
Watson, J. R. A, 2005, High-Sensitivity GPS L1 Signal Analysis for Indoor Channel Modelling, MSc thesis, University of Calgary, April 2005.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed