Skip to main content Accessibility help
×
Home

A DSRC Doppler/IMU/GNSS Tightly-coupled Cooperative Positioning Method for Relative Positioning in VANETs

  • Feng Shen (a1), Joon Wayn Cheong (a2) and Andrew G. Dempster (a2)

Abstract

Relative position awareness is a vital premise for the implementation of emerging intelligent transportation systems. However, commercial Global Satellite Navigation Systems (GNSS) receivers do not satisfy the requirements of these applications. Fortunately, Cooperative Positioning (CP) systems, based on inter-vehicle communications, have improved performance of relative positioning in a Vehicular Ad Hoc Network (VANET). CP techniques rely primarily on measurements from the Global Positioning System (GPS) to deliver measurements or positions that describe the location of individual vehicles. In urban environments, the reduced quality or complete unavailability of GPS measurements challenges the effectiveness of any CP algorithm. In this paper, a new enhanced tightly–coupled CP technique is presented by adding the measurements from low-cost inertial sensors and the Doppler shift of the carrier of Dedicated Short-Range Communications (DSRC) signals. In the enhanced CP method proposed here, vehicles communicate their Inertial Measurement Unit (IMU) data and GPS measurements. Each vehicle fuses the GPS measurements and IMU data and the inter-node range-rates based on the Doppler shift of the carrier of DSRC signals. Based on analytical and experimental results, in a full GPS coverage environment, the new tight integration CP outperforms tight CP with Inertial Navigation System (INS), tight CP and differential GPS by at least by 6%, 15%, and 28%, respectively. In a GPS outage, the performance improvement can be up to 60%, 55%, and 66% respectively.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A DSRC Doppler/IMU/GNSS Tightly-coupled Cooperative Positioning Method for Relative Positioning in VANETs
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A DSRC Doppler/IMU/GNSS Tightly-coupled Cooperative Positioning Method for Relative Positioning in VANETs
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A DSRC Doppler/IMU/GNSS Tightly-coupled Cooperative Positioning Method for Relative Positioning in VANETs
      Available formats
      ×

Copyright

Corresponding author

(E-mail: sf407@126.com)

References

Hide All
Alam, N. (2011). Three-dimensional positioning with two GNSS satellites and DSRC for vehicles in urban canyons. Proceedings of ION GNSS, Portland, OR.
Alam, N., Balaie, A.T. and Dempster, A.G. (2009). Range and range-rate measurements using DSRC: Facts and challenges. Presented at the International Global Navigation Satellite Systems (IGNSS) Symposium, Surfers Paradise, Australia.
Alam, N., Balaie, A.T. and Dempster, A.G. (2010). Dynamic path loss exponent and distance estimation in a vehicular network using Doppler effect and received signal strength. Proceedings of IEEE VTC—Fall, Ottawa, ON, Canada, 1–5.
Alam, N., Balaie, A.T. and Dempster, A.G. (2011). A DSRC Doppler-Based Cooperative Positioning Enhancement for Vehicular Networks with GPS Availability. IEEE Transactions in Vehicle Technology, 60(9), 44624471.
Alam, N., Balaie, A.T. and Dempster, A.G. (2013a). Relative positioning enhancement in VANETs, a tight integration approach. IEEE Transactions in Intelligent Transport Systems, 14(1) 4755.
Alam, N., Kealy, A. and Dempster, A.G. (2013b). An INS-aided tight integration Approach for Relative Positioning Enhancement in VANETs. IEEE Transactions in Intelligent Transport Systems, 14(4), 19921996.
Arias, J., Lazaro, J., Zuloaga., A. and Jimenez, J. (2004). Doppler location algorithm for wireless sensor networks. International Conference on Wireless Networks (ICWN 2004), Las Vegas, NV.
Boukerche, A., Oliveira, H.A.B.F., Nakamura, E.F. and Loureiro, A.A.F. (2008). Vehicular Ad Hoc Networks: A New Challenge for Localization-Based Systems. Computer Communications, 31, 28382849.
Chao, J., qi Chen, Y, Chen, W., Ding, Z., Wong, N. and Yu, M. (2001). An experimental investigation into the performance of GPS-based vehicle positioning in very dense urban areas. Journal of Geospatial Engineering, 3, 5966.
Christie, J.R.I., Ko, P-Y., Hansen, A., Dai, D., Pullen, S., Pervan, B.S. and Parkinson, B.W. (1999). The Effects of Local Ionospheric Decorrelation on LAAS: Theory and Experimental Results. In ION NTM, 769–777.
Dissanayake, G., Sukkarieh, S., Nebot, E. and Durrant-Whyte, H. (2001). The aiding of a low-cost strap down inertial measurement unit using vehicle model constraints for land vehicle applications. IEEE Transactions in Robotics and Automation, 17(5), 731747.
ETSI. (2004). Road Transport and Traffic Telematics (RTTT); Dedicated Short Range Communication (DSRC) transmission equipment (500 kbit/s / 250 kbit/s) operating in the 5,8 GHz Industrial, Scientific and Medical (ISM) band; Part 1: General characteristics and test methods for Road Side Units (RSU) and On-Board Units (OBU). Vol. EN 300 674-1, ed: European Telecommunications Standards Institute, 2004.
Grewal, M.S. and Andrews, A.P. (1993). Kalman Filtering Theory and Practice: Prentice-Hall.
Groves, P.D. (2008). Principle Of GNSS, Inertial, and Multisensor Integrated Navigation Systems. Artech House, Boston.
Hofmann-Wellenhof, B., Lichtenegger, H. and Collins, J. (2001). Global Positioning System Theory and Practice, 5th ed. New York, NY, USA: Springer-Verlag.
Kaplan, E.D. and Hegarty, C.J. (2006). Understanding GPS Principles and Applications, 2nd ed. Norwood, MA, USA: Artech House.
Parker, R. and Valaee, S. (2007). Vehicular node localization using received signal-strength indicator. IEEE Transactions of Vehicle Technology, 56(6), 33713380.
Patwari, N., Ash, J.N., Kyperountas, S., Hero, A.O., Moses, R.L. and Correal, N.S. (2005). Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 5469.
Patwari, N., Hero, A.O., Perkins, M, Correal, N.S. and O'Dea, R.J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions in Signal Processing, 51(8), 21372148.
Richter, E., Obst, M., Schubert, R. and Wanielik, G. (2009). Cooperative relative localization using vehicle-to-vehicle communications. 12th International Conference on Information Fusion, Seattle, WA, 126–131.
Tao, J., Wu, J. and Xiao, C. (2009). Estimation of channel transfer function and carrier frequency offset for OFDM systems with phase noise. IEEE Transactions in Vehicle Technology, 58(8), 43804387.
Tatchikou, R., Biswas, S. and Dion, F. (2005). Cooperative vehicle collision avoidance using inter-vehicle packet forwarding. Proceedings of IEEE GLOBECOM Conference, 2762–2766.
Teasley, S.P., Hoover, W.M. and Johnson, C.R. (1980). Differential GPS navigation. Presented at the IEEE PLANS, Position Location Navigation Symp., Atlantic City, NJ, USA.
Venkatraman, S., Caffery, J. and You, H.R. (2002). Location Using LOS Range Estimation in NLOS Environments, IEEE VTC Spring, Birmingham, AL, 856–860.
Wymeersch, H., Lien, J. and Win, M.Z. (2009). Cooperative localization in wireless networks. Proceedings of the IEEE, 97, 427450.
Xu, B., Shen, L. and Yan, F. (2009). Vehicular node positioning based on Doppler-shifted frequency measurement on highway. Journal of Electronics, 26(2), 265269.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed