Skip to main content Accessibility help
×
Home

Combined Use of Optical Imaging Satellite Data and Electronic Intelligence Satellite Data for Large Scale Ship Group Surveillance

  • Hao Sun (a1), Huanxin Zou (a1), Kefeng Ji (a1), Shilin Zhou (a1) and Chunyan Lu (a1)...

Abstract

We propose a novel framework for large-scale maritime ship group surveillance using spaceborne optical imaging satellite data and Electronic Intelligence (ELINT) satellite data. Considering that the size of a ship is usually less than the distance between different ships for large-scale maritime surveillance, we treat each ship as a mass point and ship groups are modelled as point sets. Motivated by the observation that ship groups performing tactical or strategic operations often have a stable topology and their attributes remain unchanged, we combine both topological features and attributive features within the framework of Dempster-Shafer (D-S) theory for coherent ship group analysis. Our method has been tested using different sets of simulated data and recorded data. Experimental results demonstrate our method is robust and efficient for large-scale maritime surveillance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Combined Use of Optical Imaging Satellite Data and Electronic Intelligence Satellite Data for Large Scale Ship Group Surveillance
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Combined Use of Optical Imaging Satellite Data and Electronic Intelligence Satellite Data for Large Scale Ship Group Surveillance
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Combined Use of Optical Imaging Satellite Data and Electronic Intelligence Satellite Data for Large Scale Ship Group Surveillance
      Available formats
      ×

Copyright

Corresponding author

References

Hide All
Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. Proceedings of International Conference on Computer Vision and Pattern Recognition, San Diego, CA.
Dempster, A. (1968). A generalization of Bayesian inference. Journal of Royal Statistical Society, 30, 205247.
Garcia, J., Guerrero, J.L., Luis, A. and Molina, J.M. (2010). Robust sensor fusion in real maritime surveillance scenarios. Proceedings of the 13th Conference on Information Fusion, Edinburgh.
Guerriero, M., Willett, P., Coraluppi, S. and Carthel, C. (2008). Radar/AIS data fusion and SAR tasking for Maritime Surveillance. Proceedings of the 11th International Conference on Information Fusion, Cologne.
Hofmann, T. (2001). Unsupervised learning by probabilistic latent semantic analysis. Machine Learning, 42, 177196.
Liggins, M. E., Hall, D. L. and Llinas, J. (2008). Handbook of Multisensor Data Fusion-Theory and Practice. CRC Press, Taylor & Francis Group, LLC.
Ouyang, C., Ji, H. B. and Tian, Y. (2012). Improved relaxation algorithm for passive sensor data association. IET Radar Sonar Navigation, 6, 241250.
Shafer, G. (1967). A Mathematical Theory of Evidence. NJ: Princeton University Press.
Sun, H., Wang, C., Wang, B.L. and El-sheimy, N. (2011). Pyramid binary pattern features for real-time pedestrian detection from infrared videos. Neurocomputing, 74, 797804.
Tunaley, J.K.E. (2004). Algorithms for ship detection and tracking using satellite imagery. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK.
Zhu, C. R., Zhou, H., Wang, R.S. and Guo, J. (2010). A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features. IEEE Transactions on Geoscience and Remote Sensing, 48, 34463456.
Zou, H. X., Sun, H., Ji, K. F., Du, C. and Lu, C. Y. (2013). Multimodal remote sensing data fusion via coherent point set analysis. IEEE Geoscience and Remote Sensing Letters, 10, 672676.

Keywords

Combined Use of Optical Imaging Satellite Data and Electronic Intelligence Satellite Data for Large Scale Ship Group Surveillance

  • Hao Sun (a1), Huanxin Zou (a1), Kefeng Ji (a1), Shilin Zhou (a1) and Chunyan Lu (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.