Skip to main content Accessibility help

Assessment and Impact on BDS Positioning Performance Analysis of Recent BDS IGSO-6 Satellite

  • Yidong Lou (a1) (a2), Xianjie Li (a1), Fu Zheng (a1), Yang Liu (a1) and Hailin Guo (a1)...


The BeiDou navigation satellite system (BDS) has been providing a regional service in the Asia–Pacific area since 27 December 2012, and a new Inclined Geosynchronous Satellite Orbit (IGSO) satellite IGSO-6 joined the 14-satellite constellation in operation on 29 March 2016. In this paper, the signal and positioning performance of IGSO-6 are assessed. Compared with other IGSOs, the carrier-to-noise-density ratios of IGSO-6 show comparable performance for the B3 signal and a lower power level for the B2 signal, while the B1 signal is more powerful and has the lowest noise and multipath errors. The satellite-induced code bias of IGSO-6 was investigated and indicates that IGSO-6 has similar characteristics to other IGSOs. The different inter-frequency bias variations among IGSOs with daily periodicity are demonstrated. The BDS positioning performances with IGSO-6 were investigated in Single Point Positioning (SPP) and Precise Point Positioning (PPP) modes at the 95% confidence level. For SPP, there was an improvement of about 4·9% and 3·6% in the horizontal and vertical components, respectively. The convergence time was improved by about 18·3% and 17·8% in the horizontal and vertical components for positioning accuracy to be better than 50 cm, respectively.


Corresponding author


Hide All
Chen, J., Wang, J., Zhang, Y., Yang, S., Chen, Q. and Gong, X. (2016). Modeling and Assessment of GPS/BDS Combined Precise Point Positioning. Sensors, 16, 1151.
De Bakker, P.F., Tiberius, C.C., Van Der Marel, H. and Van Bree, R.J. (2012). Short and zero baseline analysis of GPS L1 C/A, L5Q, GIOVE E1B, and E5aQ signals. GPS solutions, 16(1), 5364.
Deng, Z., Ge, M., Uhlemann, M. and Zhao, Q. (2014). Precise orbit determination of BeiDou satellites at GFZ. Proceedings of IGS workshop 23–27 June 2014, Pasadena, USA.
Diessongo, T.H., Schüler, T. and Junker, S. (2014). Precise position determination using a Galileo E5 single-frequency receiver. GPS Solutions, 18(1), 7383.
Dow, J.M., Neilan, R.E. and Rizos, C. (2009). The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy, 83(7), 689.
Han, C., Yang, Y. and Cai, Z. (2011). BeiDou navigation satellite system and its time scales. Metrologia, 48(4), S213.
Hauschild, A., Montenbruck, O., Sleewaegen, J., Huisman, L. and Teunissen, P.J.G. (2012a). Characterization of Compass M-1 signals. GPS Solutions, 16(1), 117126.
Hauschild, A., Steigenberger, P. and Rodriguez-Solano, C. (2012b). Signal, orbit and attitude analysis of Japan's first QZSS satellite Michibiki. GPS Solutions, 16(1), 127133.
Jin, S.G., Qian, X. and Wu, X. (2017). Sea level change from BeiDou Navigation Satellite System-Reflectometry (BDS-R): First results and evaluation. Global Planet. Change, 149, 2025.
Li, H., Zhou, X. and Wu, B. (2013). Fast estimation and analysis of the inter-frequency clock bias for Block IIF satellites. GPS Solutions, 17(3), 347355.
Liu, J. and Ge, M. (2003). PANDA software and its preliminary result of positioning and orbit determination. Wuhan University Journal of Natural Science, 8(2), 603609.
Lou, Y., Gong, X., Gu, S., Zheng, F. and Feng, Y. (2017). Assessment of code bias variations of BDS triple-frequency signals and their impacts on ambiguity resolution for long baselines. GPS solutions, 21(1), 177186.
Lou, Y., Zheng, F., Gu, S., Wang, C., Guo, H. and Feng, Y. (2016). Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solutions, 20(4), 849862.
Ma, Z., Chen, X., Ye, S., Lai, X., Wei, Z., Chen, J., Ning, J., Xu, H. and Ding, G. (2001). Contemporary crustal movement of continental China obtained by Global Positioning System (GPS) measurements. Chinese Science Bulletin, 46(18), 15521554.
Montenbruck, O., Hugentobler, U., Dach, R., Steigenberger, P. and Hauschild, A. (2012), Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite. GPS Solutions, 16(3), 303313.
Montenbruck, O., Hauschild, A., Steigenberger, P., Hugentobler, U., Teunissen, P. and Nakamura, S. (2013). Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solutions, 17(2), 211222.
Montenbruck, O., Steigenberger, P., Khachikyan, R., Weber, G., Langley, R.B., Mervart, L. and Hugentobler, U. (2014). IGS-MGEX: Preparing the Ground for Multi-Constellation GNSS Science. InsideGNSS, 9(1), 4249.
Qu, L., Zhao, Q., Li, M., Guo, J., Su, X. and Liu, J. (2013). Precise point positioning using combined Beidou and GPS observations. Proceedings of China Satellite Navigation Conference (CSNC) 15-17 May, Wuhan, China, 241252.
Ran, C.Q. (2011). Development of BeiDou navigation satellite system. Sixth Meeting of the International Committee on Global Navigation Satellite Systems (ICG), Tokyo, Japan.
Roussel, N., Frappart, F., Ramillien, G., Darrozes, J., Baup, F., Lestarquit, L. and Ha, M. C. (2016). Detection of soil moisture variations using GPS and GLONASS SNR data for elevation angles ranging from 2° to 70°. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(10), 47814794.
Wang, N., Yuan, Y., Li, Z., Montenbruck, O. and Tan, B. (2016). Determination of differential code biases with multi-GNSS observations. Journal of Geodesy, 90(3), 209228.
Wanninger, L. and Beer, S. (2015). BeiDou satellite-induced code pseudorange variations: diagnosis and therapy. GPS Solutions, 19(4), 639648.
Wieser, A. and Brunner, F.K. (2000). An extended weight model for GPS phase observations. Earth, Planets and Space, 52(10), 777782.
Wu, X., Zhou, J., Wang, G., Hu, X. and Cao, Y. (2012). Multipath error detection and correction for GEO/IGSO satellites. SCIENCE CHINA Physics. Mechanics & Astronomy, 55(7), 1297(10).
Wu, X., Hu, X., Wang, G., Zhong, H. and Tang, C. (2013). Evaluation of COMPASS ionospheric model in GNSS positioning. Advances in Space Research, 51(6), 959968.
Xu, A., Xu, Z., Xu, X., Zhu, H., Sui, X. and Sun, H. (2014). Precise Point Positioning Using the Regional BeiDou Navigation Satellite Constellation. Journal of Navigation, 67(3), 523537.
Yang, Y., Li, J., Xu, J., Tang, J., Guo, H. and He, H. (2011). Contribution of the compass satellite navigation system to global PNT users. Chinese Science Bulletin, 56(26), 28132819.
Yang, Y., Li, J., Wang, A., Xu, J., He, H., Guo, H., Shen, J. and Dai, X. (2014). Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system. Science China Earth Sciences, 57(1), 144152.
Yang, Y.X. (2010). Progress, contribution and challenges of Compass/Beidou satellite navigation system. Acta Geodaetica et Cartographica Sinica, 39(1), 16.
Yang, Z., Song, S., Jiao, W., Chen, G., Xue, J., Zhou, W. and Zhu, W. (2017). Ionospheric tomography based on GNSS observations of the CMONOC: performance in the topside ionosphere. GPS Solutions, 21(2), 363375.
Zhang, F., He, H., Tang, B., Shen, F. and Chen, R. (2013). Analysis of signal characteristics and positioning performance affected by pseudorange multipath for COMPASS. In Sun, J., Jiao, W., Wu, H., Shi, C. (editors) Proceedings of China satellite navigation conference (CSNC) 2013, Lecture notes in electrical engineering, vol 243, 15–17 May, Wuhan. Springer, Berlin Heidelberg, 493503.


Related content

Powered by UNSILO

Assessment and Impact on BDS Positioning Performance Analysis of Recent BDS IGSO-6 Satellite

  • Yidong Lou (a1) (a2), Xianjie Li (a1), Fu Zheng (a1), Yang Liu (a1) and Hailin Guo (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.