Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-12T20:06:51.428Z Has data issue: false hasContentIssue false

An empirical analysis on the operational profile of liquefied natural gas carriers with steam propulsion plants

Published online by Cambridge University Press:  03 December 2020

Carlos González Gutiérrez*
Affiliation:
Department of Science and Navigation Techniques and Shipbuilding, R+D Group of Ocean and Coastal Planning and Management, University of Cantabria, Santander, Spain.
Santiago Suárez de la Fuente
Affiliation:
University College London, Energy Institute, London, UK.
Jean-Marc Bonello
Affiliation:
University College London, Energy Institute, London, UK.
Richard Bucknall
Affiliation:
Department of Mechanical Engineering, University College London, London, UK
*
*Corresponding author. E-mail: carlos.gonzalezgu@alumnos.unican.es

Abstract

Liquefied natural gas (LNG) offers negligible NOx and SOx emissions as well as reductions in CO2 compared with other liquid hydrocarbons. LNG is a significant player in the global energy mix, with a projection of 40% increase in demand for the next two decades. It is anticipated that the expected rise in demand will cause the fleet of LNG carriers (LNGC) to expand. This work concentrates on steam-powered LNGC, which accounted for 47% of the LNGC fleet in 2018. It performs an empirical analysis of continuous monitoring data that provide high levels of accuracy and transparency. The analysis is done on data collected from 40 LNGCs for over a year to estimate the fleet's operational profile, fuel mix and energy performance. The findings of this work are relevant for bottom-up analysis and simulation models that depend on technical assumptions, but also for emission studies such as the upcoming Fourth International Maritime Organization Greenhouse Gases study.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamkiewicza, A. and Drzewienieckij, J. (2013). Service and maintenance of marine steam turbogenerators with the assistance of vibration diagnostics. Polish Maritime Research, 20, 3138. doi:10.2478/pomr-2013-0004.CrossRefGoogle Scholar
Afon, Y. and Ervin, D. (2012). An assessment of air emissions from liquefied natural gas ships using different power systems and different fuels. Journal of the Air & Waste Management Association, 58, 404411. doi:10.3155/1047-3289.58.3.404.CrossRefGoogle Scholar
Aguilera, R. F. (2014). The role of natural gas in a low carbon Asia Pacific. Applied Energy, 113, 17951800. doi:10.1016/j.apenergy.2013.07.048.CrossRefGoogle Scholar
Bachmann, R., Nielsen, H., Warner, J. and Kehlhofer, R. (1999). Combined-Cycle Gas & Steam Turbine Power Plants. 2nd ed. Tulsa: PennWell Publishing Company.Google Scholar
Banaszkiewicz, M. (2014). Steam turbines start-ups. Transactions of the Institute of Fluid-Flow Machinery, 126, 169198.Google Scholar
Calderón, M., Illing, D. and Veiga, J. (2016). Facilities for Bunkering of Liquefied Natural Gas in Ports. Transportation Research Procedia, 14, 24312440. doi:10.1016/j.trpro.2016.05.288.CrossRefGoogle Scholar
Chang, D., Rhee, T., Nam, K., Chang, K., Lee, D. and Jeong, S. (2008). A study on availability and safety of new propulsion systems for LNG carriers. Reliability Engineering & System Safety, 93, 18771885. doi:10.1016/j.ress.2008.03.013.CrossRefGoogle Scholar
Christensen, L. B. R., Thomas, G., Calleya, J. and Nielsen, U. D. (2018). The Effect of Operational Factors on Container Ship Fuel Performance. Proceedings of Full Scale Ship Performance.Google Scholar
Coello, J., Williams, I., Hudson, D. A. and Kemp, S. (2015). An AIS-based approach to calculate atmospheric emissions from the UK fishing fleet. Atmospheric Environment. doi:10.1016/j.atmosenv.2015.05.011CrossRefGoogle Scholar
Coraddu, A., Oneto, L., Baldi, F. and Anguita, D. (2017). Vessels fuel consumption forecast and trim optimisation: A data analytics perspective. Ocean Engineering, 130, 351370. doi:10.1016/J.OCEANENG.2016.11.058.CrossRefGoogle Scholar
Dalheim, ØØ and Steen, S. (2020). Preparation of in-service measurement data for ship operation and performance analysis. Ocean Engineering, 212, 117. doi:10.1016/j.oceaneng.2020.107730.CrossRefGoogle Scholar
Datum Electronics Limited. (2018). Commercial Marine Shaft Power Meter Handbook. United Kingdom: Datum Electronics.Google Scholar
Dimopoulos, G. G. and Frangopoulos, C. A. (2008). A dynamic model for liquefied natural gas evaporation during marine transportation. International Journal of Thermodynamics, 11, 123131. doi:10.5541/IJOT.1034000220.Google Scholar
Dobrota, Đ., Lalić, B. and Komar, I. (2013). Problem of boil-off in LNG supply chain. Transactions on Maritime Science, 2, 91100. doi:10.7225/toms.v02.n02.001.CrossRefGoogle Scholar
Doulgeris, G., Korakianitis, T., Pilidis, P. and Tsoudis, E. (2012). Techno-economic and environmental risk analysis for advanced marine propulsion systems. Applied Energy, 99, 112. doi:10.1016/j.apenergy.2012.04.026.CrossRefGoogle Scholar
Economides, M. J. and Wood, D. A. (2009). The state of natural gas. Journal of Natural Gas Science and Engineering, 1, 113. doi:10.1016/j.jngse.2009.03.005.CrossRefGoogle Scholar
Ekanem Attah, E. and Bucknall, R. (2015). An analysis of the energy efficiency of LNG ships powering options using the EEDI. Ocean Engineering, 110, 6274. doi:10.1016/j.oceaneng.2015.09.040.CrossRefGoogle Scholar
Fernández, I. A., Gómez, M. R., Gómez, J. R. and Insua, ÁB. (2017). Review of propulsion systems on LNG carriers. Renewable and Sustainable Energy Reviews, 67, 13951411. doi:10.1016/J.RSER.2016.09.095.CrossRefGoogle Scholar
Gonzalez, C. and Lara Arango, D. (2019). Techniques for the Automated Detection of Anomalies and Assessment of Quality in High-Frequency Data Collection Systems. In: Bertram, V. (ed.). 4th Hull Performance & Insight Conference. Gubbio, 143152.Google Scholar
Huang, S., Hartono, J. and Shah, P. (2007). Bog Recovery from Long Jetties. Proceedings of 15th International Conference & Exhibition on Liquefied Natural Gas, 115.Google Scholar
Hunsucker, J. T., Przelomski, D., Bashkoff, A. and Dixon, J. (2018). Uncertainty Analysis of Methods Used to Measure Ship Fuel Oil Consumption. International Maritime Organization, MEPC 72/inf.10.Google Scholar
Information Handling Services Markit. (2018). IHS Maritime World Register of Ships [WWW Document]. Marit. Trade Shipp. Intell. Available at: https://ihsmarkit.com/products/maritime-world-ship-register.html (accessed 10.10.18).Google Scholar
Information Handling Services Markit (2020). IHS Maritime World Register of Ships [WWW Document]. Marit. Trade Shipp. Intell. Available at: https://ihsmarkit.com/products/maritime-world-ship-register.html (accessed 3.9.20).Google Scholar
International Energy Agency (2018) Security. Global Gas Security Review 2018. Paris, France: IEA, 102.Google Scholar
International Gas Union (2018). 2018 World LNG Report. Barcelona.Google Scholar
International Gas Union (2019). 2019 World LNG Report. Barcelona.Google Scholar
International Maritime Organization. (2016). Resolution MEPC.281(70): Amendments to The 2014 Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (EEDI) for New Ships (Resolution MEPC.245(66), as Amended by Resolution Mepc.263(68)). Annex 9.Google Scholar
International Organization for Standardization (2016). ISO 19030 Ships And Marine Technology - Measurement of Changes in Hull and Propeller Performance - Part 1: General Principles.Google Scholar
Jalkanen, J. P., Johansson, L. and Kukkonen, J. (2016). A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011. Atmospheric Chemistry and Physics, 16, 7184. doi:10.5194/acp-16-71-2016CrossRefGoogle Scholar
Kano, T. and Namie, S. (2014). A study on estimation methodology of GHG emission from vessels by using energy efficiency index and time series monitoring data. In: Ehlers, S., Asbjornslett, B.E., Rodseth, O.J., Berg, T.E. (eds.). Maritime-Port Technology and Development. London: CRC Press, 3541. doi:10.1201/b17517-6.Google Scholar
Krikkis, R. N. (2018). A thermodynamic and heat transfer model for LNG ageing during ship transportation. Towards an efficient boil-off gas management. Cryogenics (Guildf), 92, 7683. doi:10.1016/j.cryogenics.2018.04.007.CrossRefGoogle Scholar
Kyma, A. S. (2018). Internal Communications.Google Scholar
Lin, Y., Yu, Y. and Guan, G. (2014). Research on energy efficiency design index for sea-going LNG carriers. Journal of Marine Science and Application, 13, 430436. doi:10.1007/s11804-014-1282-6.CrossRefGoogle Scholar
Lu, J., Xu, S., Deng, J., Wu, W., Wu, H. and Yang, Z. (2016). Numerical prediction of temperature field for cargo containment system (CCS) of LNG carriers during pre-cooling operations. Journal of Natural Gas Science and Engineering, 29, 382391. doi:10.1016/J.JNGSE.2016.01.009.CrossRefGoogle Scholar
Merien-Paul, R. H., Enshaei, H. and Jayasinghe, S. G. (2018). In-situ data vs. bottom-up approaches in estimations of marine fuel consumptions and emissions. Transportation Research Part D: Transport and Environment, 62, 619632. doi:10.1016/j.trd.2018.04.014.CrossRefGoogle Scholar
Mokhatab, S. (2014). LNG Fundamentals. In: Handbook of Liquefied Natural Gas. Amsterdam: Gulf Professional Publishing, 1106. doi:10.1016/B978-0-12-404585-9.00001-5.Google Scholar
Moreno-Gutiérrez, J., Pájaro-Velázquez, E., Amado-Sánchez, Y., Rodríguez-Moreno, R., Calderay-Cayetano, F. and Durán-Grados, V. (2019). Comparative analysis between different methods for calculating on-board ship's emissions and energy consumption based on operational data. Science of the Total Environment, 650, 575584. doi:10.1016/j.scitotenv.2018.09.045.CrossRefGoogle ScholarPubMed
Mrzljak, V. and Poljak, I. (2019). Energy analysis of main propulsion steam turbine from conventional LNG carrier at three different loads. Naše More, 66, 1018. doi:10.17818/nm/2019/1.2.CrossRefGoogle Scholar
Mrzljak, V., Poljak, I. and Medica-Viola, V. (2017). Dual fuel consumption and efficiency of marine steam generators for the propulsion of LNG carrier. Applied Thermal Engineering, 119, 331346. doi:10.1016/j.applthermaleng.2017.03.078.CrossRefGoogle Scholar
Mrzljak, V., Prpić-Oršić, J. and Senčić, T. (2018). Change in steam generators main and auxiliary energy flow streams during the load increase of LNG carrier steam propulsion system . Scientific Journal of Maritime Research 32, 121131.Google Scholar
Nunes, R. A. O., Alvim-Ferraz, M. C. M., Martins, F. G. and Sousa, S. I. V. (2017). The activity-based methodology to assess ship emissions - A review. Environmental Pollution, 231, 87103. doi:10.1016/j.envpol.2017.07.099.CrossRefGoogle ScholarPubMed
Olmer, N., Comer, B., Roy, B., Mao, X. and Rutherford, D. (2017). Greenhouse Gas Emissions from Global Shipping, 2013–2015. Washington, DC, USA: International Council on Clean Transportation.Google Scholar
Petersen, J. P., Jacobsen, D. J. and Winther, O. (2012). Statistical modelling for ship propulsion efficiency. Journal of Marine Science and Technology, 17, 3039. doi:10.1007/s00773-011-0151-0.CrossRefGoogle Scholar
Prpić-Oršić, J. and Faltinsen, O. M. (2012). Estimation of ship speed loss and associated CO2 emissions in a seaway. Ocean Engineering, 44, 110. doi:10.1016/j.oceaneng.2012.01.028.CrossRefGoogle Scholar
Shao, Y., Lee, Y.-H., Kim, Y.-T. and Kang, H.-K. (2018). Parametric investigation of BOG generation for ship-to-ship LNG bunkering. Journal of the Korean Society of Marine Environment and Safety, 24, 352359. doi:10.7837/kosomes.2018.24.3.352.CrossRefGoogle Scholar
Shaton, K., Hervik, A. and Hjelle, H. M. (2019). The environmental footprint of natural gas transportation: LNG vs. pipeline. Economics of Energy & Environmental Policy, 8, 122. doi:10.5547/2160-5890.8.2.ksha.Google Scholar
Sinha, R. P. and Nik, W. M. N. W. (2012). Investigation of Propulsion System for Large LNG Ships. Proceedings 1st International Conference on Mechanical Engineering Research, 116. doi:10.1088/1757-899X/36/1/012004CrossRefGoogle Scholar
Smith, T. W. P., Jalkanen, J. P., Anderson, B. A., Corbett, J. J., Faber, J., Hanayama, S., O'Keeffe, E., Parker, S., Johansson, L., Aldous, L., Raucci, C., Traut, M., Ettinger, S., Nelissen, D., Lee, D. S., Ng, S., Agrawal, A., Winebrake, J. J., Hoen, M., Chesworth, S. and Pandey, A. (2014). Third IMO GHG Study 2014. London: International Maritime Organization (IMO).Google Scholar
Smith, T. W., Raucci, C., Haji Hosseinloo, S., Rojon, I., Calleya, J., Suarez de la Fuente, S., Wu, P. and Palmer, K. (2016). CO2 Emissions from International Shipping: Possible Reduction Targets and Their Associated Pathways. London: University Maritime Advisory Services (UMAS).Google Scholar
SNAME (1961). Recommended Practices for Preparing Marine Steam Power Plant Heat Balances. Technical & Research program by the Society of Naval Architects and Marine Engineers (SNAME).Google Scholar
Soner, O., Akyuz, E. and Celik, M. (2018). Use of tree based methods in ship performance monitoring under operating conditions. Ocean Engineering, 166, 302310. doi:10.1016/j.oceaneng.2018.07.061.CrossRefGoogle Scholar
Tu, H., Hongjun, F., Lei, W. and Guoqiang, Z. (2019). Options and evaluations on propulsion systems of LNG Carriers. In: Propulsion Systems. China: IntechOpen, 120. doi:10.5772/intechopen.82154Google Scholar
UMAS (2016). FUSE [WWW Document]. Products. Available at: https://u-mas.co.uk/Products/fuse [Accessed 7.1.19].Google Scholar
UNCTAD. (2018). Review of Maritime Transport 2018. Geneva: The United Nations Conference on Trade and Development.Google Scholar
Varahrami, V. and Haghighat, M. S. (2018). The assessment of liquefied natural gas (LNG) demand reversibility in selected OECD countries. Energy Reports, 4, 370375. doi:10.1016/j.egyr.2018.05.006CrossRefGoogle Scholar
Wang, K., Yan, X., Yuan, Y., Jiang, X., Lodewijks, G. and Negenborn, R. R. (2017). Study on Route Division for Ship Energy Efficiency Optimization Based on Big Environment Data. 2017 4th International Conference on Transportation Information and Safety, ICTIS 2017 - Proceedings. 111116. doi:10.1109/ICTIS.2017.8047752CrossRefGoogle Scholar
Woud, H. K. and Stapersma, D. (2012). Design of Propulsion and Electric Power Generation Systems. 1st ed. London: IMarEST.Google Scholar
Yu, W., Zhou, P. and Wang, H. (2018). Evaluation on the energy efficiency and emissions reduction of a short-route hybrid sightseeing ship. Ocean Engineering, 162, 3442. doi:10.1016/j.oceaneng.2018.05.016.CrossRefGoogle Scholar
Zheng, H., Huang, Y. and Ye, Y. (1999). New level sensor system for ship stability analysis and monitor. IEEE Transactions on Instrumentation and Measurement, 48, 10141017. doi:10.1109/19.816106.CrossRefGoogle Scholar
Supplementary material: File

González Gutiérrez et al. supplementary material

González Gutiérrez et al. supplementary material 1

Download González Gutiérrez et al. supplementary material(File)
File 145.3 KB
Supplementary material: File

González Gutiérrez et al. supplementary material

González Gutiérrez et al. supplementary material 2

Download González Gutiérrez et al. supplementary material(File)
File 184.6 KB