Skip to main content Accessibility help
×
Home

The Three-Dimensional Infinite Space and Half-Space Green's Functions for Orthotropic Materials

  • V.-G. Lee (a1)

Abstract

Common materials, ranging from natural wood to modern composites, have been recognized as ortho-tropic materials. The elastic properties of such materials are governed by nine elastic constants. In this paper the complete set of Green's functions for an infinite medium and a half space is given, which were not reported completely before. Analytic expressions for the infinite Green's functions are derived through the explicit form of the sextic equation given explicitly. For an orthotopic half space, the Green's function is derived by a superposition method. The mathematical concept is based on the addition of a complementary term to the Green's function in an orthotropic infinite domain to fulfill the boundary condition on the free surface. Both solutions are illustrated in certain directions to demonstrate the nature of orthotropy.

Copyright

Corresponding author

References

Hide All
1.Taylor, W. R., Roland, E., Ploeg, H., Hertig, D., Klabunde, R., Warner, M. D., Hobatho, M. C., Rakotomanana, L. and Clift, S. E., “Determination of Orthotropic Bone Elastic Constants Using FEA and Modal Analysis,Journal of Biomechanics, 35, pp. 767773 (2002).
2.Reddy, J. N. and Phan, N. D., “Stability and Vibration of Isotropic, Orthotropic and Laminated Plates According to a Higher-Order Shear Deformation Theory,Journal of Sound and Vibration, 98, pp. 157170 (1985).
3.Hou, P. F., Wang, L. and Yi, T., “2D Green's Functions for Semi-Infinite Orthotropic Thermoelastic Plane,Applied Mathematical Modelling, 33, pp. 16741682 (2009).
4.Hou, P. F., He, S. and Chen, C. P., “2D General Solution and Fundamental Solution for Orthotropic Thermoelastic Materials,Engineering Analysis with Boundary Elements, 35, pp. 5660 (2011)
5.Kumar, R. and Chawla, V., “Green's Functions in Orthotropic Thermoelastic Diffusion Media,Engineering Analysis with Boundary Elements, 36, pp. 12721277 (2012).
6.Swanson, S. R., “Hertzian Contact of Orthotropic Materials,International Journal of Solids and Structures, 41, pp. 19451959 (2004).
7.Swanson, S. R., “Contact Deformation and Stress in Orthotropic Plates,Composites A, 36, pp. 14211429 (2005).
8.Bonnet, G., “Orthotropic Elastic Media Having a Closed Form Expression of the Green Tensor,International Journal of Solids and Structures, 46, pp. 12401250 (2009).
9.Ting, T. C. T. and Lee, V. G., “The Three-Dimensional Elastostatic Green's Function for General Anisotropic Linear Elastic Solids,Quarterly Journal of Mechanics and Applied Mathematics, 50, pp. 407426 (1997).
10. Lee, N. G., “Elastic Green's Function for an Infinite Half-Space of a Hexagonal Continuum with its Basal Plane as Surface,International Journal of Engineering Science, 17, pp. 681689 (1979).
11. Couteau, B., Labey, L., Hobatho, M. C., Vander, Sloten J., Arlaud, J. Y. and Brignola, J. C., “Validation of a Three Dimensional Finite Element Model of a Femur with a Customized Hip Implant. In: Middleton,Computer Methods in Biomechanics & Biomedical Engineering, 2, pp. 147154 (1998).
12. Herakovich, C. T., Mechanics of Fibrous Composites, John Wiley & Sons, Inc., Hoboken, New Jersey, p. 57 (1998).
13. Ting, T. C. T., Anisotropic Elasticity: Theory and Application, Oxford University Press, United Kingdom, pp. 528530 (1996)
14. Lee, V. G., “Superposing Scheme for the Three-Dimensional Green's Functions of an Anisotropic Half-Space,International Journal of Solids and Structures, 50, pp. 24072415 (2013).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed