Skip to main content Accessibility help
×
Home

Studying Three-Dimensionality of Vortex Shedding Behind a Circular Cylinder with Mems Sensors

  • J. K. Tu (a1), J. J. Miau (a1), Y. J. Wang (a1), G. B. Lee (a2) and C. Lin (a3)...

Abstract

Experiments were made with 14 MEMS sensors situated along the span of a circular cylinder whose aspect ratio was 5. The signals of the MEMS sensors were sampled simultaneously as flow over the cylinder at Reynolds numbers of 104. The results of Wavelet analysis of the signals indicate that the percentage of time during which strong three-dimensionality of vortex shedding was detected is about 10%.As noted, strong three-dimensionality took place when the fluctuating amplitude of the signals was severely modulated and the vortex shedding frequency reduced appeared abnormally high or low. Further noted was that the addition of a splitter plate of 0.5 or one diameter in length behind the circular cylinder was not able to suppress the three-dimensionality of the flow.

Copyright

Corresponding author

*Ph.D. candidate
**Professor
***Master student

References

Hide All
1.Hama, F. R., “Three-Dimensional Vortex Pattern Behind a Circular Cylinder,” Journal of the Aeronautical Sciences, 24, pp. 156158 (1957).
2.Bloor, M. S., “The Transition to Turbulence in the Wake of a Circular Cylinder,” Journal of Fluid Mechanics, 19, pp. 290304 (1964).
3.Gerrard, J. H., “The Three-Dimensional Structure of the Wake of a Circular Cylinder,” Journal of Fluid Mechanics, 25, pp. 143164(1966).
4.Roshko, A., “Perspectives on Bluff Body Aerodynamics,” Journal of Wind Engineering and Industrial Aerodynamics, 49, pp. 79100 (1993).
5.Williamson, C. H. K., ”Three-Dimensional Wake Transition, “ Journal of Fluid Mechanics, 328, pp. 345407 (1996).
6.Norberg, C., “Fluctuating Lift on a Circular Cylinder: Review and New Measurements,” Journal of Fluids and Structures, 17, pp. 5796 (2003).
7.Norberg, C., “An Experimental Investigation of the Flow around a Circular Cylinder: Influence of Aspect Ratio,” Journal of Fluid Mechanics, 258, pp. 287316 (1994).
8.Szepessy, S. and Bearman, P. W., “Aspect Ratio and End Plate Effects on Vortex Shedding from a Circular Cylinder,” Journal of Fluid Mechanics, 234, pp. 191217 (1992).
9.Najjar, F. M. and Vanka, S. P., “Effects of Intrinsic Three-Dimensionality on the Drag Characteristics of a Normal flat plate,” Phys. Fluids, 7(10), pp. 25162518 (1995).
10.Braza, M., Faghani, D. and Persillon, H., “Successive Stages and the Role of Natural Vortex Dislocations in Three-Dimensional Wake Transition,” Journal of Fluid Mechanics, 439, pp. 141 (2001).
11.Thompson, M., Hourigan, K. and Sheridan, J., “Three-Dimensional Instabilities in the Wake of a Circular Cylinder,” Experimental Thermal and Fluid Science, 12, pp. 190196(1996).
12.Henderson, R. D., “Nonlinear Dynamics and Pattern Formation in Turbulent Wake Transition,” Journal of Fluid Mechanics, 352, pp. 65112 (1997).
13.Roshko, A., “On the Development of Turbulent Wakes from Vortex Streets,” NACA Report 1191, (1954).
14.Zdravkovich, M. M., “Different Modes of Vortex Shedding: an Overview,” Journal of Fluids and Structures, 10, pp. 427437 (1996).
15.Miau, J. J., Wu, S. J., Hu, C. C. and Chou, J. H., “Low-Frequency Modulations Associated with Vortex Shedding from Flow over Bluff Body,” AIAA Journal 42(7), pp. 13881396(2004).
16.Wu, S. J., Miau, J. J., Hu, C. C. and Chou, J. H., “On Low-Frequency Modulations and Three-Dimensionality in Vortex Shedding Behind a Normal Plate,” Journal of Fluid Mechanics, 526, pp. 117146 (2005).
17.Wang, C. T., “Clarifying low-frequency variations phenomenon using a novel mode decomposition method,” Journal of Mechanics, 22, pp. 193198 (2006).
18.Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H., “The Empirical Mode Decomposition and the Hilbert Spectrum of Nonlinear and Non-Stationary Time Series Analysis,” Proc. R. Soc. Lond., A454, pp. 903995 (1998).
19.Miau, J. J., Tu, J. K., Chou, J. H. and Lee, G. B., “Sensing Flow Separation on a Circular Cylinder by MEMS Thermal-Film Sensors,” AIAA Journal 44(10), pp. 22242230 (2005).
20.Mattingly, G. E., “An experimental study of the three dimensionality of the flow around a circular cylinder,” University of Maryland, Technical Note BN-295, (1962).
21.Gerich, D. and Eckelmann, H., “Influence of End Plates and Free Ends on the Shedding Frequency of Circular Cylinders,” Journal of Fluid Mechanics, 122, pp. 109121 (1982).
22.Torrence, C. and Compo, T. P., “A Practical Guide to Wavelet Analysis,” Bull. Am. Met. Soc., 79, pp. 6178 (1998).
23.Nishimura, H. and Taniike, Y., “Aerodynamic Characteristics of Fluctuating Forces on a Circular Cylinder,” Journal of Wind Engineering and Industrial Aerodynamics, 89, pp. 713723 (2001).
24.Miau, J. J., Yang, C. C., Chou, J. H. and Lee, K. R., “Suppression of Low Frequency Variations in Vortex Shedding by a Splitter Plate behind a Bluff Body,” Journal of Fluids and Structures, 7, pp. 897912 (1993).
25.Miau, J. J., Wang, Y. J. and Tu, J. K., “On the threedimensionality of initial wake developments behind a normal plate and a T-shaped vortex shedder,” Eurasian Physical Technical Journal, 2(4), pp. 5262 (2005).
26.Wei, C. Y. and Miau, J. J., “Influences of Freestream Turbulence and Wake on Flow Near the Stagnation Region,” Journal of the Chinese Society of Mechanical Engineers, 12(6), pp. 555562 (1991).
27.Wei, C. Y. and Miau, J. J., “Stretching of Freestream Turbulence in Stagnation Region,” AIAA Journal, 30(9), pp. 21962203 (1992).
28.Wei, C. Y. and Miau, J. J., “Characteristics of Stretched Vortical Structures in Two-Dimensional Stagnation Flow,” AIAA Journal, 31(11), pp. 20752082 (1993).
29.Hunt, J. C. R., “A Theory of Turbulent Flow Round Two-Dimensional Bluff Bodies,” Journal of Fluid Mechanics, 61, Pt. 4, pp. 625706 (1973).
30.Sadeh, W. Z. and Brauer, H. J., “A Visual Investigation of Turbulence in Stagnation Flow about a Circular Cylinder,” Journal of Fluid Mechanics, 99, Pt. 1, pp. 5364 (1980).
31.Britter, R. E., Hunt, J. C. R. and Mumford, J. C., “The Distortion of Turbulence by a Circular Cylinder,” Journal of Fluid Mechanics, 92, Pt. 2, pp. 269301 (1979).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed