1.Wang, X. Q. and Mujumdar, A. S., “Heat transfer characteristics of nanofluids: a review,” International Journal of Thermal Sciences, 46, pp. 1–19 (2007).

2.Choi, U. S., “Enhancing thermal conductivity of fluids with nanoparticles,” Developments and Applications of Non-Newtonian Flows, ASME FED, 231, pp. 99–105 (1995).

3.Das, S. K., Choi, S. U. S., Yu, W. and Pradeep, T., Nanofluids: Science and Technology, 1st Edition, Wiley, New Jersey (2007).

4.Sheikholeslami, M. and Ganji, D. D., “Nanofluid Convective Heat Transfer Using Semi Analytical and Numerical Approaches: A Review,” Journal of the Taiwan Institute of Chemical Engineers, 65, pp. 43–77 (2016).

5.Vadasz, P., Emerging Topics in Heat and Mass Transfer in Porous Media, volume 22, Springer, New York (2008).

6.Wang, X. Q. and Mujumdar, A. S., “A review on nanofluids-part I: theoretical and numerical investigations,” Brazilian Journal of Chemical Engineering, 25, pp. 613–630 (2008).

7.Wang, X. Q. and Mujumdar, A. S., “A review on nanofluids-part II: experiments and applications,” Brazilian Journal of Chemical Engineering, 25, pp. 631–648 (2008).

8.Kakac, S. and Pramuanjaroenkij, A., “Review of convective heat transfer enhancement with nanofluids,” International Journal of Heat and Mass Transfer, 52, pp. 3187–3196 (2009).

9.Nield, D. A. and Bejan, A., Convection in Porous Media, 5th Edition, Springer, New York (2017).

10.Ingham, D. B. and Pop, I., Transport Phenomena in Porous Media, volume 3, Elsevier, Oxford (2005).

11.Khan, W. A. and Aziz, A., “Double-Diffusive Natural Convective Boundary Layer Flow in a Porous Medium Saturated with a Nanofluid Over a Vertical Plate: Prescribed Surface Heat, Solute and Nanoparticle Fluxes,” International Journal of Thermal Sciences, 50, pp. 2154–2160 (2011).

12.Nield, D. A. and Kuznetsov, A. V., “The Cheng–Minkowycz Problem for the Double-Diffusive Natural Convective Boundary Layer Flow in a Porous Medium Saturated by a Nanofluid,” International Journal of Heat and Mass Transfer, 54, pp. 374–378 (2011).

13.Buongiorno, J., “Convective Transport in Nanofluids,” Journal of Heat Transfer, 128, pp. 240–250 (2006).

14.Syakila, A. and Pop, I., “Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids,” International Communications in Heat and Mass Transfer, 37, pp. 987–991 (2010).

15.Tiwari, R. K. and Das, M. K., “Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids,” International Journal of Heat and Mass Transfer, 50, pp. 2002–2018 (2007).

16.Ali Agha, H., Bouaziz, M. N. and Hanini, S., “Magnetohydrodynamic Thermal Radiation and Convective Boundary Effects of Free Convection Flow Past a Vertical Plate Embedded in a Porous Medium Saturated with a Nanofluid,” Journal of Mechanics, 31, pp. 607–616 (2015).

17.Srinivasacharya, D. and Surender, O., “Effect of Double Stratification on Mixed Convection Boundary Layer Flow of a Nanofluid Past a Vertical Plate in a Porous Medium,” Applied Nanoscience, 5, pp. 29–38 (2015).

18.Murthy, P. V. S. N., Sutradhar, A. and RamReddy, C., “Double-Diffusive Free Convection Flow Past an Inclined Plate Embedded in a Non-Darcy Porous Medium Saturated with a Nanofluid,” Transport in Porous Media, 98, pp. 553–564 (2013).

19.Hayat, T., Muhammad, T., Shehzad, S. A. and Alsaedi, A., “Soret and Dufour Effects in Three-Dimensional Flow over an Exponentially Stretching Surface with Porous Medium, Chemical Reaction and Heat Source/Sink,” International Journal of Numerical Methods for Heat & Fluid Flow, 25, pp. 762–781 (2015).

20.Hayat, T., Mustafa, M. and Pop, I., “Heat and Mass Transfer for Soret and Dufour’s Effect on Mixed Convection Boundary Layer Flow over a Stretching Vertical Surface in a Porous Medium Filled with a Viscoelastic Fluid,” Communications in Nonlinear Science and Numerical Simulation, 15, pp. 1183–1196 (2010).

21.Nithyadevi, N. and Rajarathinam, M., “Non-Darcy Double Diffusive Mixed Convection for Nanofluid with Soret and Dufour Effects in a Lid-Driven Cavity,” International Journal of Nanoparticles, 8, pp. 218–240 (2015).

22.Ramzan, M., Yousaf, F., Farooq, M. and Chung, J. D., “Mixed Convective Viscoelastic Nanofluid Flow Past a Porous Media with Soret-Dufour Effects,” Communications in Theoretical Physics, 66, pp. 133–142 (2016).

23.Sreedevi, G., Rao, D. R. V., Makinde, O. D. and Reddy, G., “Soret and Dufour Effects on MHD Flow with Heat and Mass Transfer Past a Permeable Stretching Sheet in Presence of Thermal Radiation,” Indian Journal of Pure & Applied Physics, 55, pp. 551–563 (2017).

24.Chamkha, A. J., Aly, A. M. and Raizah, Z. A. S., “Double-Diffusion MHD Free Convective Flow Along a Sphere in the Presence of a Homogeneous Chemical Reaction and Soret and Dufour Effects,” Applied and Computational Mathematics, 6, pp. 34–44 (2017).

25.Jha, B. K. and Babatunde, A., “Numerical Investigation of Transient Free Convective Flow in Vertical Channel Filled with Porous Material in the Presence of Thermal Dispersion,” Computational Mathematics and Modeling, 28, pp. 350–367 (2017).

26.Murthy, P. V. S. N., “Effect of Double Dispersion on Mixed Convection Heat and Mass Transfer in Non-Darcy Porous Medium,” Journal of Heat Transfer, 122, pp. 476–484 (2000).

27.Sobha, V. V., Vasudeva, R. Y., Ramakrishna, K. and Hema Latha, K., “Non-Darcy Mixed Convection with Thermal Dispersion in a Saturated Porous Medium,” Journal of Heat Transfer, 132, pp. 14501–14504 (2010).

28.Bouaziz, A. M. and Hanini, S., “Double Dispersion for Double Diffusive Boundary Layer in Non-Darcy Saturated Porous Medium Filled by a Nanofluid,” Journal of Mechanics, 1, pp. 1–11 (2016).

29.Sheremet, M. A., Revnic, C. and Pop, I., “Free Convection in a Porous Wavy Cavity Filled with a Nanofluid Using Buongiorno’s Mathematical Model with Thermal Dispersion Effect,” Applied Mathematics Computation, 299, pp. 1–15 (2017).

30.Lai, F. C. and Kulacki, F. A., “Thermal Dispersion Effect on Non-Darcy Convection from Horizontal Surface in Saturated Porous Media,” International journal of heat and mass transfer, 32, pp. 971–976 (1989).

31.Lai, F. C. and Kulacki, F. A., “Non-Darcy Mixed Convection Along a Vertical Wall in a Saturated Porous Medium,” Journal of Heat Transfer, 113, pp. 252–254 (1991).

32.Hassanien, I. A., Bakier, A. Y. and Gorla, R. S. R., “Effects of Thermal Dispersion and Stratification on Non-Darcy Mixed Convection From a Vertical Plate in a Porous Medium,” Heat and Mass Transfer, 34, pp. 209–212 (1998).

33.Murthy, P. V. S. N., “Thermal Dispersion and Viscous Dissipation Effects on Non-Darcy Mixed Convection in a Fluid Saturated Porous Medium,” Heat and Mass Transfer, 33, pp. 295–300 (1998).

34.Murthy, P. V. S. N. and Singh, P., “Thermal Dispersion Effects on Non-Darcy Convection Over a Cone,” Computer and Mathematics with Applications, 40, pp. 1433–1444 (2000).

35.El-Amin, M. F., “Double Dispersion Effects on Natural Convection Heat and Mass Transfer in Non- Darcy Porous Medium,” Applied Mathematics and Computation, 156, pp. 1–17 (2004).

36.Partha, M. K., “Thermophoresis Particle Deposition in a Non-Darcy Porous Medium Under the Influence of Soret, Dufour Effects,” Heat Mass Transfer, 44, pp. 969–977 (2008).

37.Wong, K. V. and Leon, O. D., “Applications of nanofluids: current and future,” Advances in Mechanical Engineering, 2010, pp. 1–11 (2010).

38.Plumb, O. A., “The Effect of Thermal Dispersion on Heat Transfer in Packed Bed Boundary Layers,” ASME/JSME Thermal Engineering Joint Conference, 2, pp. 17–21 (1983).

39.Awad, F. G., Sibanda, P. and Murthy, P. V. S. N., “A note on double dispersion effects in a nano-fluid flow in a non-Darcy porous medium,” Journal of Heat Transfer, 137, pp. 104501–104505 (2015).

40.Kameswaran, P. K. and Sibanda, P., “Thermal dispersion effects on convective heat and mass transfer in an Ostwald de Waele nanofluid flow in porous media,” Boundary Value Problems, 2013, pp. 24–255 (2013).

41.Roşsca, A. V., Roşsca, N. C. and Pop, I., “Mixed Convection Heat and Mass Transfer From a Vertical Surface Embedded in a Porous Medium,” Transport in Porous Media, 109, pp. 279–295 (2015).

42.Shampine, L. F., Gladwell, I. and Thompson, S., Solving ODEs with Matlab, first Edition, Cambridge University Press, New York (2003).

43.Puneet, R., Bhargava, R. and Bég, O. A., “Numerical Solution for Mixed Convection Boundary Layer Flow of a Nanofluid Along an Inclined Plate Embedded in a Porous Medium,” Computers and Mathematics with Applications, 64, pp. 2816–2832 (2012).

44.Seddeek, M. A., “Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media,” Journal of Colloid and Interface Science, 293, pp. 137–142 (2006).

45.RamReddy, C., Murthy, P. V. S. N., Chamkha, A. J. and Rashad, A. M., “Soret effect on mixed convection flow in a nanofluid under convective boundary condition,” International journal of heat and mass transfer, 64, pp. 384–392 (2013).

46.Rashad, A. M., Chamkha, A. J., RamReddy, C. and Murthy, P. V. S. N., “Effect of Viscous Dissipation on Mixed Convection in a Nanofluid Saturated Non-Darcy Porous Medium Under Convective Boundary Condition,” Journal of Nanofluids, 4, pp. 548–559 (2015).