Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-19T10:43:01.325Z Has data issue: false hasContentIssue false

The Optimum Cage Position and Orientation on the ALIF with Facet Screw Fixation: A Finite Element Analysis and the Taguchi Method

Published online by Cambridge University Press:  31 August 2011

C.-Y. Fan
Affiliation:
Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, R.O.C.
C.-K. Chao*
Affiliation:
Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, R.O.C.
C.-C. Hsu
Affiliation:
Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan 10607, R.O.C.
K.-H. Chao
Affiliation:
Department of Orthopedic Surgery, Tri-Service General Hospital, Taipei, Taiwan 10086, R.O.C.
*
**Professor, corresponding author
Get access

Abstract

Anterior Lumbar Interbody Fusion (ALIF) has been widely used to treat internal disc degeneration. However, different cage positions and their orientations may affect the initial stability leading to different fusion results. The purpose of the present study is to investigate the optimum cage position and orientation for aiding an ALIF having a transfacet pedicle screw fixation (TFPS). A three-dimensional finite element model (ALIF with TFPS) has been developed to simulate the stability of the L4/L5 fusion segment under five different loading conditions. The Taguchi method was used to evaluate the optimized placement of the cages. Three control factors and two noise factors were included in the parameter design. The control factors included the anterior-posterior position, the medio-lateral position, and the convergent-divergent angle between the two cages. The compressive preload and the strengths of the cancellous bone were set as noise factors. From the results of the FEA and the Taguchi method, we suggest that the optimal cage positioning has a wide anterior placement, and a diverging angle between the two cages. The results show that the optimum cage position simultaneously contributes to a stronger support of the anterior column and lowers the risk of TFPS loosening.

Type
Articles
Copyright
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Grob, D. and Humke, T., “Translaminar Screw Fixation in the Lumbar Spine: Technique, Indications, Results,” European Spine Journal, 7, pp. 178–118 (1998).CrossRefGoogle Scholar
2. Janssen, M. E., Lam, C. and Beckham, R., “Out-comes of Allogenic Cages in Anterior and Posterior Lumbar Interobdy Fusion,” European Spine Journal, 10, pp. s158–s168 (2001).Google Scholar
3. Oxland, T. R., Hoffer, Z., Nydegger, T., Rathonyi, G. C. and Nolte, L. P., “A Comparative Biomechanical Investigation of Anterior Lumbar Interbody Cages: Central and Bilateral Approaches,” Journal of Bone and Joint Surgery, American Volume, 82, pp. 383393 (2000).Google ScholarPubMed
4. Diedrich, O., “Radiographic Spinal Profile Changes Induced by Cage Design after Posterior Lumbar Interbody Fusion,” Spine, 26, pp. E274–E280 (2001).CrossRefGoogle ScholarPubMed
5. Glazer, P. A., Colliou, O., Klisch, S. M., Bradford, D. S., Bueff, H. U. and Lotz, J. C., “Biomechanical Analysis of Multilevel Fixation Methods in the Lumbar Spine,” Spine, 22, pp. 171182 (1997).CrossRefGoogle ScholarPubMed
6. Lund, T., Oxland, T. R., Jost, B., Cripton, P., Grassmann, S., Etter, C. and Nolte, L. P., “Interbody Cage Stabilisation in the Lumbar Spine: Biomechanical Evaluation of Cage Design, Posterior Instrumentation and Bone Desity,” Journal of Bone and Joint Surgery, British Volume, 80, pp. 351359 (1998).CrossRefGoogle Scholar
7. Oxland, T. R. and Lund, T., “Biomechanics of Stand-Alone Cages and Cages in Combination with Posterior Fixation: A Literature Review,” European Spine Journal, 9, pp. S95–S101 (2000).CrossRefGoogle ScholarPubMed
8. Tsantrizos, A., Andreou, A., Aebi, M. and Steffen, T., “Biomechanical Stability of Five Stand-Alone Anterior Lumbar Interbody Fusion Constructs,” European Spine Journal, 9, pp. 1422 (2000).CrossRefGoogle ScholarPubMed
9. Ferrara, L. A. and Benzel, E. C., “Biomechanics of Interbody Fusion,” Techniques in Neurosurgery, 7, pp. 100109 (2001).CrossRefGoogle Scholar
10. Jost, B., Cripton, P. A., Lund, T., Oxland, T. R., Lippuner, K., Jaeger, P. and Nolte, L. P., “Compressive Strength of Interbody Cages in the Lumbar Spine: The Effect of Cage Shape, Posterior Instrumentation and Bone Density,” European Spine Journal, 7, pp. 132141 (1998).CrossRefGoogle ScholarPubMed
11. Fan, C. Y., Hsu, C. C., Chao, C. K., Lin, S. C. and Chao, K. H., “Biomechanical Comparisons of Different Posterior Instrumentation Constructs after Two-Level Alif: A Finite Element Study,” Medical Engineering & Physics, 32, pp. 203211 (2010).CrossRefGoogle Scholar
12. Ferrara, L. A., Secor, J. L., Jin, B. H., Wakefield, A., Inceoglu, S. and Benzel, E. C., “A Biomechanical Comparison of Facet Screw Fixation and Pedicle Screw Fixation: Effects of Short-Term and Long-Term Repetitive Cycling,” Spine, 28, pp. 12261234 (2003).CrossRefGoogle ScholarPubMed
13. Kandziora, F., Schleicher, P., Scholz, M., Pflugmacher, R., Eindorf, T., Haas, N. P. and Pavlov, P. W., “Biomechanical Testing of the Lumbar Facet Interference Screw,” Spine, 30, pp. E34–E39 (2005).CrossRefGoogle ScholarPubMed
14. Kim, S. M., Lim, T. J., Paterno, J. and Kim, D. H., “A Biomechanical Comparison of Supplementary Posterior Translaminar Facet and Transfacetope-dicular Screw Fixation after Anterior Lumbar Interbody Fusion,” Journal of Neurosurgery Spine, 1, pp. 101107 (2004).CrossRefGoogle ScholarPubMed
15. Phillips, F. M., Cunningham, B., Carandang, G., Ghanayem, A. J., Voronov, L., Havey, R. M. and Patwardhan, A. G., “Effect of Supplemental Translaminar Facet Screw Fixation on the Stability of Stand-Alone Anterior Lumbar Interbody Fusion Cages under Physiologic Compressive Preloads,” Spine, 29, pp. 1737–1736 (2004).CrossRefGoogle ScholarPubMed
16. Tan, J. S., Bailey, C. S., Dvorak, M. F., Fisher, C. G. and Oxland, T. R., “Interbody Device Shape and Size Are Important to Strengthen the Vertebra-Implant Interface,” Spine, 30, pp. 638644 (2005).CrossRefGoogle ScholarPubMed
17. Beaubien, B. P., Mehbod, A. A., Kallemeier, P. M., Lew, W. D., Buttermann, G. R., Transfeldt, E. E. and Wood, K. B., “Posterior Augmentation of an Anterior Lumbar Interbody Fusion: Minimally Invasive Fixation Versus Pedicle Screws in Vitro,” Spine, 29, pp. E406–E412 (2004).CrossRefGoogle ScholarPubMed
18. Abbushi, A., Cabraja, M., Thomale, U. W., Woiciechowsky, C. and Kroppenstedt, S. N., “The Influence of Cage Positioning and Cage Type on Cage Migration and Fusion Rates in Patients with Monosegmental Posterior Lumbar Interbody Fusion and Posterior Fixation,” European Spine Journal, 18, pp. 16211628 (2009).CrossRefGoogle ScholarPubMed
19. Yang, K., Teo, E. C. and Fuss, F. K., “Application of Taguchi Method in Optimization of Cervical Ring Cage,” Journal of Biomechanics, 40, pp. 32513256 (2007).CrossRefGoogle ScholarPubMed
20. Hsu, W. H., Chao, C. K., Hsu, H. C., Lin, J. and Hsu, C. C., “Parametric Study on the Interface Pullout Strength of the Vertebral Body Replacement Cage Using Fem-Based Taguchi Methods,” Medical Engineering & Physics, 31, pp. 287294 (2008).CrossRefGoogle Scholar
21. Goel, V. K., Lim, T. H., Gwon, J., Chen, J. Y., Win-terbottom, J. M., Park, J. B., Weinstein, J. N. and Ahn, J. Y., “Effects of Rigidity of an Internal Fixation Device. A Comprehensive Biomechanical Investigation,” Spine, 16, pp. S155–S161 (.1991).CrossRefGoogle ScholarPubMed
22. Kim, Y., “Finite Element Analysis of Anterior Lumbar Interbody Fusion: Threaded Cylindrical Cage and Pedicle Screw Fixation,” Spine, 32, pp. 25582568 (2007).CrossRefGoogle ScholarPubMed
23. Lim, T. H. and Goel, V. K., “Load Sharing Characteristics in the Stabilized Lumbar Motion Segment: A Finite Element Study,” Journal of Musculoskeletal Research, 2, pp. 5564 (1998).CrossRefGoogle Scholar
24. Pitzen, T., Matthis, D. and Steudel, W.-I., “The Effect of Posterior Instrumentation Following PLIF with BAK Cages is Most Pronounced in Weak Bone,” Acta Neurochir (Wien), 144, pp. 121128 (2002).CrossRefGoogle ScholarPubMed
25. Polikeit, A., Ferguson, S. J., Nolte, L. P. and Orr, T. E., “The Importance of the Endplate for Interbody Cages in the Lumbar Spine,” European Spine Journal, 12, pp. 556561 (2003).CrossRefGoogle ScholarPubMed
26. Goel, V. K., Kim, Y. E., Lim, T. H. and Weinstein, J. N., “An Analytical Investigation of the Mechanics of Spinal Instrumentation,” Spine, 13, pp. 10031011 (1988).CrossRefGoogle ScholarPubMed
27. Beaubine, B. P., Derincek, A., Lew, W. D. and Wood, K. B., “In Vitro, Biomechanical Comparison of an Anterior Lumbar Interbody Fusion with an Anteriorly Placed, Low-Profile Lumbar Plate and Posteriorly Placed Pedicle Screws or Translaminar Screws,” Spine, 30, pp. 18461851 (2005).CrossRefGoogle Scholar
28. Eskander, M., Brooks, D., Ordway, N., Dale, E. and Connolly, P., “Analysis of Pedicle and Translaminar Facet Fixation in a Multisegment Interbody Fusion Model,” Spine, 32, pp. E230–E235 (2007).CrossRefGoogle Scholar
29. Wilke, H. J., Wenger, K. and Claes, L., “Testing Criteria for Spinal Implant: Recommendations for the Standardization of in Vitro Stability Testing of Spinal Implants,” European Spine Journal, 7, pp. 148154 (1998).CrossRefGoogle ScholarPubMed
30. Keyak, J. H. and Skinner, H. B., “Three-Dimensional Finite Element Modeling of Bone: Effects of Element Size,” Journal of Biomedical Engineering, 14, pp. 483489 (1992).CrossRefGoogle ScholarPubMed
31. Mosekilde, L., Mosekilde, L. and Danielson, C. C., “Biomechanical Competence of Vertebral Trabecular Bone in Relation to Ash Ednsity and Age in Normal Individuals,” Bone, 8, pp. 7985 (1987).CrossRefGoogle Scholar
32. Silva, M. J., Keaveny, T. M. and Hayes, W. C., “Load Sharing between the Shell and Centrum in the Lumbar Vertebral Body,” Spine, 22, pp. 140150 (1997).CrossRefGoogle ScholarPubMed
33. Kim, K. S., Yang, T. K. and Lee, J. C., “Radiological Changes in the Bone Fusion Site after Posterior Lumbar Interbody Fusion Using Carbon Cages Impacted with Laminar Bone Chips: Follow-up Study over More Than 4 Years,” Spine, 30, pp. 655660 (2005).CrossRefGoogle Scholar
34. Lowe, T. G., Hashim, S., Wilson, L. A., O'Brien, M. F., Smith, D. A., Diekmann, M. J. and Trommeter, J., “A Biomechanical Study of Regional Endplate Strength and Cage Morphology as it Relates to Structural Interbody Support,” Spine, 29, pp. 23892394 (2004).CrossRefGoogle ScholarPubMed
35. Grant, J. P., Oxland, T. R. and Dvorak, M. F., “Mapping the Structural Properties of the Lumbosacral Vertebral Endplates,” Spine, 26, pp. 889896 (2001).CrossRefGoogle ScholarPubMed