Skip to main content Accessibility help

The Optimum Cage Position and Orientation on the ALIF with Facet Screw Fixation: A Finite Element Analysis and the Taguchi Method

  • C.-Y. Fan (a1), C.-K. Chao (a1), C.-C. Hsu (a1) and K.-H. Chao (a2)


Anterior Lumbar Interbody Fusion (ALIF) has been widely used to treat internal disc degeneration. However, different cage positions and their orientations may affect the initial stability leading to different fusion results. The purpose of the present study is to investigate the optimum cage position and orientation for aiding an ALIF having a transfacet pedicle screw fixation (TFPS). A three-dimensional finite element model (ALIF with TFPS) has been developed to simulate the stability of the L4/L5 fusion segment under five different loading conditions. The Taguchi method was used to evaluate the optimized placement of the cages. Three control factors and two noise factors were included in the parameter design. The control factors included the anterior-posterior position, the medio-lateral position, and the convergent-divergent angle between the two cages. The compressive preload and the strengths of the cancellous bone were set as noise factors. From the results of the FEA and the Taguchi method, we suggest that the optimal cage positioning has a wide anterior placement, and a diverging angle between the two cages. The results show that the optimum cage position simultaneously contributes to a stronger support of the anterior column and lowers the risk of TFPS loosening.


Corresponding author

**Professor, corresponding author


Hide All
1. Grob, D. and Humke, T., “Translaminar Screw Fixation in the Lumbar Spine: Technique, Indications, Results,” European Spine Journal, 7, pp. 178–118 (1998).
2. Janssen, M. E., Lam, C. and Beckham, R., “Out-comes of Allogenic Cages in Anterior and Posterior Lumbar Interobdy Fusion,” European Spine Journal, 10, pp. s158–s168 (2001).
3. Oxland, T. R., Hoffer, Z., Nydegger, T., Rathonyi, G. C. and Nolte, L. P., “A Comparative Biomechanical Investigation of Anterior Lumbar Interbody Cages: Central and Bilateral Approaches,” Journal of Bone and Joint Surgery, American Volume, 82, pp. 383393 (2000).
4. Diedrich, O., “Radiographic Spinal Profile Changes Induced by Cage Design after Posterior Lumbar Interbody Fusion,” Spine, 26, pp. E274–E280 (2001).
5. Glazer, P. A., Colliou, O., Klisch, S. M., Bradford, D. S., Bueff, H. U. and Lotz, J. C., “Biomechanical Analysis of Multilevel Fixation Methods in the Lumbar Spine,” Spine, 22, pp. 171182 (1997).
6. Lund, T., Oxland, T. R., Jost, B., Cripton, P., Grassmann, S., Etter, C. and Nolte, L. P., “Interbody Cage Stabilisation in the Lumbar Spine: Biomechanical Evaluation of Cage Design, Posterior Instrumentation and Bone Desity,” Journal of Bone and Joint Surgery, British Volume, 80, pp. 351359 (1998).
7. Oxland, T. R. and Lund, T., “Biomechanics of Stand-Alone Cages and Cages in Combination with Posterior Fixation: A Literature Review,” European Spine Journal, 9, pp. S95–S101 (2000).
8. Tsantrizos, A., Andreou, A., Aebi, M. and Steffen, T., “Biomechanical Stability of Five Stand-Alone Anterior Lumbar Interbody Fusion Constructs,” European Spine Journal, 9, pp. 1422 (2000).
9. Ferrara, L. A. and Benzel, E. C., “Biomechanics of Interbody Fusion,” Techniques in Neurosurgery, 7, pp. 100109 (2001).
10. Jost, B., Cripton, P. A., Lund, T., Oxland, T. R., Lippuner, K., Jaeger, P. and Nolte, L. P., “Compressive Strength of Interbody Cages in the Lumbar Spine: The Effect of Cage Shape, Posterior Instrumentation and Bone Density,” European Spine Journal, 7, pp. 132141 (1998).
11. Fan, C. Y., Hsu, C. C., Chao, C. K., Lin, S. C. and Chao, K. H., “Biomechanical Comparisons of Different Posterior Instrumentation Constructs after Two-Level Alif: A Finite Element Study,” Medical Engineering & Physics, 32, pp. 203211 (2010).
12. Ferrara, L. A., Secor, J. L., Jin, B. H., Wakefield, A., Inceoglu, S. and Benzel, E. C., “A Biomechanical Comparison of Facet Screw Fixation and Pedicle Screw Fixation: Effects of Short-Term and Long-Term Repetitive Cycling,” Spine, 28, pp. 12261234 (2003).
13. Kandziora, F., Schleicher, P., Scholz, M., Pflugmacher, R., Eindorf, T., Haas, N. P. and Pavlov, P. W., “Biomechanical Testing of the Lumbar Facet Interference Screw,” Spine, 30, pp. E34–E39 (2005).
14. Kim, S. M., Lim, T. J., Paterno, J. and Kim, D. H., “A Biomechanical Comparison of Supplementary Posterior Translaminar Facet and Transfacetope-dicular Screw Fixation after Anterior Lumbar Interbody Fusion,” Journal of Neurosurgery Spine, 1, pp. 101107 (2004).
15. Phillips, F. M., Cunningham, B., Carandang, G., Ghanayem, A. J., Voronov, L., Havey, R. M. and Patwardhan, A. G., “Effect of Supplemental Translaminar Facet Screw Fixation on the Stability of Stand-Alone Anterior Lumbar Interbody Fusion Cages under Physiologic Compressive Preloads,” Spine, 29, pp. 1737–1736 (2004).
16. Tan, J. S., Bailey, C. S., Dvorak, M. F., Fisher, C. G. and Oxland, T. R., “Interbody Device Shape and Size Are Important to Strengthen the Vertebra-Implant Interface,” Spine, 30, pp. 638644 (2005).
17. Beaubien, B. P., Mehbod, A. A., Kallemeier, P. M., Lew, W. D., Buttermann, G. R., Transfeldt, E. E. and Wood, K. B., “Posterior Augmentation of an Anterior Lumbar Interbody Fusion: Minimally Invasive Fixation Versus Pedicle Screws in Vitro,” Spine, 29, pp. E406–E412 (2004).
18. Abbushi, A., Cabraja, M., Thomale, U. W., Woiciechowsky, C. and Kroppenstedt, S. N., “The Influence of Cage Positioning and Cage Type on Cage Migration and Fusion Rates in Patients with Monosegmental Posterior Lumbar Interbody Fusion and Posterior Fixation,” European Spine Journal, 18, pp. 16211628 (2009).
19. Yang, K., Teo, E. C. and Fuss, F. K., “Application of Taguchi Method in Optimization of Cervical Ring Cage,” Journal of Biomechanics, 40, pp. 32513256 (2007).
20. Hsu, W. H., Chao, C. K., Hsu, H. C., Lin, J. and Hsu, C. C., “Parametric Study on the Interface Pullout Strength of the Vertebral Body Replacement Cage Using Fem-Based Taguchi Methods,” Medical Engineering & Physics, 31, pp. 287294 (2008).
21. Goel, V. K., Lim, T. H., Gwon, J., Chen, J. Y., Win-terbottom, J. M., Park, J. B., Weinstein, J. N. and Ahn, J. Y., “Effects of Rigidity of an Internal Fixation Device. A Comprehensive Biomechanical Investigation,” Spine, 16, pp. S155–S161 (.1991).
22. Kim, Y., “Finite Element Analysis of Anterior Lumbar Interbody Fusion: Threaded Cylindrical Cage and Pedicle Screw Fixation,” Spine, 32, pp. 25582568 (2007).
23. Lim, T. H. and Goel, V. K., “Load Sharing Characteristics in the Stabilized Lumbar Motion Segment: A Finite Element Study,” Journal of Musculoskeletal Research, 2, pp. 5564 (1998).
24. Pitzen, T., Matthis, D. and Steudel, W.-I., “The Effect of Posterior Instrumentation Following PLIF with BAK Cages is Most Pronounced in Weak Bone,” Acta Neurochir (Wien), 144, pp. 121128 (2002).
25. Polikeit, A., Ferguson, S. J., Nolte, L. P. and Orr, T. E., “The Importance of the Endplate for Interbody Cages in the Lumbar Spine,” European Spine Journal, 12, pp. 556561 (2003).
26. Goel, V. K., Kim, Y. E., Lim, T. H. and Weinstein, J. N., “An Analytical Investigation of the Mechanics of Spinal Instrumentation,” Spine, 13, pp. 10031011 (1988).
27. Beaubine, B. P., Derincek, A., Lew, W. D. and Wood, K. B., “In Vitro, Biomechanical Comparison of an Anterior Lumbar Interbody Fusion with an Anteriorly Placed, Low-Profile Lumbar Plate and Posteriorly Placed Pedicle Screws or Translaminar Screws,” Spine, 30, pp. 18461851 (2005).
28. Eskander, M., Brooks, D., Ordway, N., Dale, E. and Connolly, P., “Analysis of Pedicle and Translaminar Facet Fixation in a Multisegment Interbody Fusion Model,” Spine, 32, pp. E230–E235 (2007).
29. Wilke, H. J., Wenger, K. and Claes, L., “Testing Criteria for Spinal Implant: Recommendations for the Standardization of in Vitro Stability Testing of Spinal Implants,” European Spine Journal, 7, pp. 148154 (1998).
30. Keyak, J. H. and Skinner, H. B., “Three-Dimensional Finite Element Modeling of Bone: Effects of Element Size,” Journal of Biomedical Engineering, 14, pp. 483489 (1992).
31. Mosekilde, L., Mosekilde, L. and Danielson, C. C., “Biomechanical Competence of Vertebral Trabecular Bone in Relation to Ash Ednsity and Age in Normal Individuals,” Bone, 8, pp. 7985 (1987).
32. Silva, M. J., Keaveny, T. M. and Hayes, W. C., “Load Sharing between the Shell and Centrum in the Lumbar Vertebral Body,” Spine, 22, pp. 140150 (1997).
33. Kim, K. S., Yang, T. K. and Lee, J. C., “Radiological Changes in the Bone Fusion Site after Posterior Lumbar Interbody Fusion Using Carbon Cages Impacted with Laminar Bone Chips: Follow-up Study over More Than 4 Years,” Spine, 30, pp. 655660 (2005).
34. Lowe, T. G., Hashim, S., Wilson, L. A., O'Brien, M. F., Smith, D. A., Diekmann, M. J. and Trommeter, J., “A Biomechanical Study of Regional Endplate Strength and Cage Morphology as it Relates to Structural Interbody Support,” Spine, 29, pp. 23892394 (2004).
35. Grant, J. P., Oxland, T. R. and Dvorak, M. F., “Mapping the Structural Properties of the Lumbosacral Vertebral Endplates,” Spine, 26, pp. 889896 (2001).


The Optimum Cage Position and Orientation on the ALIF with Facet Screw Fixation: A Finite Element Analysis and the Taguchi Method

  • C.-Y. Fan (a1), C.-K. Chao (a1), C.-C. Hsu (a1) and K.-H. Chao (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed