1.Hashin, Z., “On Elastic Behavior of Fiber Reinforced Materials of Arbitrary Transverse Phase Geometry,” J. Mech. Phys. Solids, 13, pp. 119–134 (1965).

2.Silnutzer, N., “Effective Constants of Statistically Homogeneous Materials,” Ph. D. Dissertation, Univ. of Pennsylvania., U.S.A. (1972).

3.Milton, G. W., “Bounds on the Elastic and Transport Properties of Two-Component Materials,” J. Mech. Phys. Solids, 30, pp. 177–191 (1982).

4.Torquato, S. and Lado, F., “Improved Bounds on The Effective Elastic Moduli of Random Arrays of Cylinders,” J. Appl. Mech., 59, pp. 1–6 (1992).

5.Kroner, E., “Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls,” Z. Phys., 151, pp. 504–518 (1958).

6.Budiansky, B., “On the Elastic Moduli of Some Heterogeneous Materials,” J. Mech. Phys. Solids, 13, pp. 223–227 (1965).

7.Hill, R., “A Self Consistent Mechanics of Composite Materials,” J. Mech. Phys. Solids, 13, pp. 213–222 (1965).

8.Christensen, R. M. and Lo, K. H., “Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Model,” J. Mech. Phys. Solids, 27, pp. 315–330 (1979).

9.Christensen, R. M., “A critical Evaluation for a Class of Micro-Mechanics Models,” J. Mech. Phys. Solids, 38, pp. 379–404 (1990).

10.Huang, Y., Hu, K. X., Wei, X. and Chandra, A., “A Generalized Self-Consistent Mechanics Method for Composite Materials with Multiphase Inclusions,” J. Mech. Phys. Solids, 42, pp. 491–504 (1994).

11.Mori, T. and Tanaka, K., “Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions,” Acta Metall., 21, pp. 571–574 (1973).

12.Eshelby, J. D., “The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problem,” Proc. Roy. Soc., A241, pp. 376–396 (1957).

13.Taya, M. and Mura, T., “On Stiffness and Strength of an Aligned Short-Fiber Reinforced Composite Containing Fiber-End Cracks Under Uniaxial Applied Stress,” J.Appl. Mech., 48, pp. 361–367 (1981).

14.Taya, M., “On Stiffness and Strength of an Aligned Short-Fiber Reinforced Composite Containing Penny- Shaped Cracks In The Matrix,” J. Compos. Mat., 15, pp. 198–210(1981).

15.Weng, G. J., “The Theoretical Connection Between Mori-Tanaka's Theory and Hashin-Shtrikman-Walpole Bound,” Int. J. Eng. Sci., 28, pp. 1111–1120 (1990).

16.Benveniste, Y., “A Approach to the Application of Mori-Tanaka's Theory In Composite Materials,” Mech. Mat., 60, pp. 147–157(1987).

17.Federico, S., Grillo, A. and Herzog, W., “A Transversely Isotropic Composite with a Statistical Distribution of Spheroidal Inclusion: A Geometrical Approach to Overall Properties,” J. Mech. Phys. Solids, 52, pp. 2309–2327 (2004).

18.Kovacs, I., “Theory of Stationary Lattice Defects as Sources of Elastic Singularities,” Physica B+C, 94, pp. 177–186(1978).

19.Hsieh, R. K. T., Voros, G. and Kovacs, I., “Stationary Lattice Defects as Sources of Elastic Singularities In Micropolar Media,” Physica B +C, 101, pp. 201–208 (1980).

20.Mura, T., Micromechanics of Defects in Solids, Second Edition, Kluwer Academic Publishers (1987).

21.Ju, J. W and Chen, T. M., “Micromechanics and Effective Moduli of Elastic Composites Containing Randomly Dispersed Ellipsoidal Inhomogeneities,” Acta Mechanica, 103, pp. 103–121 (1994).

22.Ju, J. W. and Chen, T. M., “Effective Elastic Moduli of Two-Phase Composites Containing Randomly Dispersed Spherical Inhomogeneities,” Acta Mechanica, 103, pp. 123–144(1994).

23.Ju, J. W. and Lee, H. K., “A Micromechanical Damage Model for Effective Elastoplastic Behavior of Ductile Matrix Composites Containing Evolutionary Complete Particle Debonding,” Comput. Method Appl. Mech. Eng., 183, pp. 201–222 (1998).

24.Ju, J. W. and Zhang, X. D., “Micromechanics and Effective Transverse Elastic Moduli of Composites with Randomly Located Aligned Circular Fibers,” Int. J.Solids Struct., 35, pp. 941–960 (1998).

25.Christensen, R. M., “Effective Viscous Flow Properties for Fiber Suspensions Under Concentrated Conditions,” J. Rheol., 37, pp. 103–121 (1993).