Skip to main content Accessibility help
×
Home

Development of the Source Reconstruction System by Combining Sound Source Localization and Time Reversal Method

  • S.-C. Lin (a1), G.-P. Too (a1) and C.-W. Tu (a1)

Abstract

This study explored the target sound source location at unknown situation and processed the received signal to determine the location of the target, including the reconstructed signal of source immediately. In this paper, it used triangulation sound sources localization and time reversal method (TRM) to reconstruct the source signals. The purpose is to use a sound source localization method with a simple device to quickly locate the position of the sound source. This method uses the microphone array to measure signal from the target sound source. Then, the sound source location is calculated and is indicated by Cartesian coordinates. The sound source location is then used to evaluate free field impulse response function which can replace the impulse response function used in time-reversal method. This process reduces the computation time greatly which makes possible for a real time source localization and source signal separation.

Copyright

Corresponding author

*Corresponding author (p18981077@mail.ncku.edu.tw)

References

Hide All
1. Carter, G. C., “Time Delay Estimation for Passive Sonar Signal Processing,” IEEE Transactions Acoustics, Speech, Signal Processing, 29, pp. 463470 (1981).
2. Ferguson, B. G., “Variability in the Passive Ranging of Acoustic Sources in Air Using a Wavefront Curvature Technique,” Journal of the Acoustical Society of America, 108, pp. 15351544 (2000).
3. Ferguson, B. G., Criswick, L. G. and Lo, K. W., “Locating Far-Field Impulsive Sound Sources in Air by Triangulation,” Journal of the Acoustical Society of America, 111, pp. 104116 (2002).
4. Knapp, C. H. and Carter, G. C., “The Generalized Correlation Method for Estimation of Time Delay,” IEEE Transactions Acoustics, Speech, Signal Processing, 24, pp. 320327 (1976).
5. Ehrenberg, J. E., Ewart, T. E. and Morris, R. D., “Signal Processing Techniques for Resolving Individual Pulses in a Multipath Signal,” Journal of the Acoustical Society of America, 63, pp. 18611865 (1978).
6. Chen, J., Benesty, J. and Huang, Y., “Time Delay Estimation in Room Acoustic Environments: An Overview,” EURASIP Journal on Applied Signal Processing, 2006, pp. 120 (2006).
7. Wu, S. and Zhu, N., “Locating Arbitrarily Time-dependent Sound Sources in Three Dimensional Space in Real Time,” Journal of the Acoustical Society of America, 128, pp. 728739 (2010).
8. Quazi, A. H., “An Overview on the Time-Delay Estinate in Active and Passive Systems for Target Localization,” IEEE Transactions Acoustics, Speech, Signal Processing, 29, pp. 527533 (1981).
9. Tortel, H., Micolau, G. and Saillard, M., “Decomposition of the Time Reversal Operator for Electromagnetic Scattering,” Journal of Electromagnetic Waves and Applications, 13, pp. 687719 (1999).
10. Gruber, F. K., Marengo, E. A. and Devaney, A. J., “Time-reversal Imaging with Multiple Signal Classification Considering Multiple Scattering between the Targets,” Journal of the Acoustical Society of America, 115, pp. 30423047 (2004).
11. Fink, M., “Time Reversal of Ultrasonic Fields-part I: Basic Principles,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 39, pp. 555566 (1992).
12. Jackson, D. R. and Dowling, D. R., “Phase Conjugation in Underwater Acoustics,” Journal of the Acoustical Society of America, 89, pp. 171181 (1991).
13. Dungan, M. R. and Dowling, D. R., “Computed Narrow-Band Time-Reversing Array Retrofocusing in a Dynamic Shallow Ocean,” Journal of the Acoustical Society of America, 107, pp. 31013112 (2000).
14. Dungan, M. R. and Dowling, D. R., “Computed Narrow-Band Azimuthal Time-Reversing Array Retrofocusing in Shallow Water,” Journal of the Acoustical Society of America, 110, pp. 19311942 (2001).
15. Sabra, K. G. and Dowling, D. R., “Broadband Performance of a Time Reversing Array with a Moving Source,” Journal of the Acoustical Society of America, 115, pp. 28072817 (2004).
16. Sabra, K. G., “Experimental Demonstration of Iterative Time-Reversed Reverberation Focusing in a Rough Waveguide. Application to Target Detection,” Journal of the Acoustical Society of America, 120, pp. 13051314 (2006).
17. Wu, B.-H., Too, G.-P. and Lee, S., “Audio Signal Separation via a Combination Procedure of Time-Reversal and Deconvolution Process,” Mechanical Systems and Signal Processing, 24, pp. 14311443 (2010).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed