Skip to main content Accessibility help

Design and Development of a Piezoelectric Actuator for the Scanning Probe Microscope Used in Ultrahigh Vacuum

  • K.-Y. Huang (a1) and C.-J. Lee (a1)


This paper is to present the design and development of a piezoelectric actuator for SPM in ultrahigh vacuum (10−7∼10−9 Torr). The measuring probe is installed on a precise scanning actuator, which is further driven by a fast approaching actuator. The precise scanning actuator composed of a piezo-tube with segmented electrodes can realize 3-D precise scanning motions at subnanometer level to move the measuring probe over the measured surface. Because of its stable and smooth actuating behavior, the inchworm actuating principle is selected for the fast approaching actuator, which is build up with two controllable clamping devices and an actuating device. Diverse flexure mechanisms are applied in the actuator to attain frictionless guiding and recovery functions. To realize balanced clamping forces on the scanning tube, each clamping device is integrated with a fine regulating mechanism for clamping force. By applying the theoretical model and the finite element analysis, the relations between force and deflection inside the actuator were investigated to validate its function. The developed actuator has sustained the severe baking and pumping process, and their function and performance were verified experimentally in ultrahigh vacuum.


Corresponding author

*Associate Professor
**Master of Science


Hide All
1.Binnig, G. and Rohrer, H., “Surface Studies by Scanning Tunneling Microscopy,Physical Review Letters, 49(1), pp. 5761 (1982).
2.Binnig, G. and Rohrer, H., “The Scanning Tunneling Microscope,Scientific American, 253, pp. 5056 (1985).
3.O'Hanlon, J. F., A User's Guide to Vacuum Technology, John Wiley and Sons, New York (1982).
4.Hwang, I. S. and Chang, C. S., http://www.phys.sinica.
5.Uchino, K., “Recent Trend of Piezoelectric Actuator Developments,” Proceedings of the International Symposium on Micro Machine and Human Science, pp. 39 (1999).
6.Bexell, M. and Johansson, S., “Fabrication and Evaluation of a Piezoelectric Miniature Motor,Sensors and Actuators A, 75, pp. 816 (1998).
7.Suzuki, Y., Tani, K. and Sakuhara, T., “Development of a New Type Piezoelectric Micromotor,Sensors and Actuators A, 83, pp. 244248 (2000).
8. Nanomotion company: techback.html
9.Mariotto, G., D'Angelo, M., Kresnin, J. and Shevets, I.V., “Study of The Dynamic Behaviour of a Piezo-Walker,Applied Surface Science, 144–145, pp. 530533 (1999).
10.Hemsel, T. and Wallaschek, J., “Survey of the Present State of The Art of Piezoelectric Linear Motors,Ultrasonics, 38, pp. 3740 (2000).
11. Burleigh Company:
12.Ganz, E., Theiss, S., Hwang, I.-S. and Golovchenko, J., “Direct Measurement of Diffusion by Hot Tunneling Microscopy: Activation Energy, Anisotropy, and Long Jumps,Phys. Rev. Lett., 68, pp. 15671570 (1992).
13.Chang, T. J., Scanning Tunneling Microscopy Study ofGe Epitaxial growth on Monolayer of Pb Covered Si (111) Substrate, Ph.D. Dissertation, Department of Electrical Engineering, National Taiwan University, Taiwan (1999).
14.Shang, G., Qiu, X., Wang, C. and Bai, C., “Piezoelectric Push-Pull Micropositioner for Ballistic Electron Emission Microscope,Rev. Sci. Instrum., 68, pp. 38033805 (1997).
15.Pond, K., Nosho, B. Z., Stuber, H. R., Gossard, A. C. and Weinberg, W. H. A., “Two-Dimensional Ultrahigh Vacuum Positioner for Scanning Tunneling Microscopy,Rev. Sci. Instrum., 69(3), pp. 14031405 (1998).
16.Li, Y., Guo, M., Zhou, Z. and Hu, M., “Micro Electro Discharge Machine with an Inchworm Type of Micro Feed Mechanism,Precision Engineering, 26, pp. 714 (2002).
17.Tarn, J.-Q. and Chang, H.-H., “Effective Lengths of Tensile and Torsional Specimens of Piezoelectric Materials,Journal of Mechanics, 22, pp. 2734 (2006).
18.Yang, X.-H., Zahang, Y., Hu, Y. -T. and Chen, C. -Y., “Continuum Damage Mechanics for Thermo-Piezoelectric Materials,Journal of Mechanics, 22, pp. 9398 (2006).
19.Paros, J. M. and Weisbord, L., “Flexure Hinges,Machine Design, 27, pp. 151156 (1965).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed