Skip to main content Accessibility help
×
Home

Amount of Water Sufficient to Suppress Thermal Decomposition of Forest Fuel

  • G. V. Kuznetsov (a1), P. A. Strizhak (a1), R. S. Volkov (a1) and A. O. Zhdanova (a1)

Abstract

This study examines how to stop the pyrolysis of fir needles, birch leaves, aspen twigs and their mixture using the minimum volumes of water. The combustion of forest fuels is suppressed by spraying water on their surface. The temperature of thermal decomposition is monitored throughout the layer of forest fuel by thermocouples. A high-speed camera and optical techniques allow us to study water spraying and its interaction with forest fuels. Finally, the study specifies the ranges of the minimum water volumes and the times of ending of the thermal decomposition of forest fuels. When analyzing the energy balance in the thermally decomposing forest fuel, a mathematical expression is formulated to predict the water volume sufficient to suppress thermal decomposition of forest fuel. This expression takes into account the ratio between the heat energy spent on water evaporation in pores of forest fuel and the heat energy of the reacting layer of forest fuel. The obtained dimensionless factor considers the main parameters of water spraying and the properties of forest fuel. This factor enables us to apply the research findings to forest fuel in various regions of the world.

Copyright

Corresponding author

*Corresponding author (pavelspa@tpu.ru)

References

Hide All
1. Xiao, X. K. et al., “On the Behavior of Flame Expansion in Pool Fire Extinguishment with Steam Jet,” Journal of Fire Sciences, 29, pp. 339360 (2011).
2. McAllister, S., “Critical Mass Flux for Flaming Ignition of Wet Wood,” Fire Safety Journal, 61, pp. 200206 (2013).
3. McAllister, S. et al., “Piloted Ignition of Live Forest Fuels,” Fire Safety Journal, 51, pp. 133142 (2012).
4. Bidabadi, M., Abedinejad, M. S. and Fereidooni, J., “Modeling of the Propagation of a Reaction Front in Fixed Bed Combustion of Wood Particles,” Journal of Mechanics, 27, pp. 453459 (2011).
5. Gupta, M. et al., “Experimental Evaluation of Fire Suppression Characteristics of Twin Fluid Water Mist System,” Fire Safety Journal, 54, pp. 130142 (2012).
6. Tang, Z., Fang, Z., Yuan, J. P. and Merci, B., “Experimental Study of the Downward Displacement of Fire-Induced Smoke by Water Spray,” Fire Safety Journal, 55, pp. 3549 (2013).
7. Liu, N. et al., “Upslope Spread of a Linear Flame Front over a Pine Needle Fuel Bed: The Role of Convection Cooling,” Proceedings of the Combustion Institute, 35, pp. 26912698 (2015).
8. Cheikhravat, H. et al., “Effects of Water Sprays on Flame Propagation in Hydrogen/Air/Steam Mixtures,” Proceedings of the Combustion Institute, 35, pp. 27152722 (2015).
9. Thompson, M. P., Calkin, D. E., Herynk, J., McHugh, C. W. and Short, K. C., “Airtankers and Wildfire Management in the US Forest Service: Examining Data Availability and Exploring Usage and Cost Trends,” International Journal of Wildland Fire, 22, pp. 223233 (2012).
10. Calkin, D. E., Stonesifer, C. S., Thompson, M. P. and McHugh, C. W., “Large Airtanker Use and Outcomes in Suppressing Wildland Fires in the United States,” International Journal of Wildland Fire, 23, pp. 259271 (2014).
11. Strizhak, P. A., “Influence of Droplet Distribution in a “Water Slug” on the Temperature and Concentration of Combustion Products in its Wake,” Journal of Engineering Physics and Thermophysics, 86, pp. 895904 (2013).
12. Zhdanova, A. O., Kuznetsov, G. V. and Strizhak, P. A., “Numerical Investigation of Physicochemical Processes Occurring during Water Evaporation in the Surface Layer Pores of a Forest Combustible Material,” Journal of Engineering Physics and Thermophysics, 87, pp. 773781 (2014).
13. Korobeinichev, O. P. et al., “Fire Suppression by Low-Volatile Chemically Active Fire Suppressants Using Aerosol Technology,” Fire Safety Journal, 51, pp. 102109 (2012).
14. Vysokomornaya, O. V., Kuznetsov, G. V. and Strizhak, P. A., “Experimental Investigation of Atomized Water Droplet Initial Parameters Influence on Evaporation Intensity in Flaming Combustion,” Fire Safety Journal, 70, pp. 6170 (2014).
15. Vysokomornaya, O. V., Kuznetsov, G. V. and Strizhak, P. A., “Evaporation of Water Droplets in a High-Temperature Gaseous Medium,” Journal of Engineering Physics and Thermophysics, 89, pp. 141151 (2016).
16. Vysokomornaya, O. V., Kuznetsov, G. V. and Strizhak, P. A., “Conditions of Intensive Evaporation of Heterogeneous Water Droplet in High Temperature Gas Environment,” Journal of Mechanics, 32, pp. 349355 (2016).
17. Dehaeck, S., Van Parys, H., Hubin, A. and Van Beeck, J. P. A. J., “Laser Marked Shadowgraphy: a Novel Optical Planar Technique for the Study of Microbubbles and Droplets,” Experiments in Fluids, 47, pp. 333341 (2009).
18. Akhmetbekov, Y. K., Alekseenko, S. V., Dulin, V. M., Markovich, D. M. and Pervunin, K. S., “Planar Fluorescence for Round Bubble Imaging and its Application for the Study of an Axisymmetric Two-Phase Jet,” Experiments in Fluids, 48, pp. 615629 (2010).
19. Kreizer, M., Ratner, D. and Liberzon, A., “Real Time Image Processing for Particle Tracking Velocimetry,” Experiments in Fluids, 48, pp. 105110 (2010).
20. Hagiwara, Y., Sakamoto, S., Tanaka, M. and Yoshimura, K., “PTV Measurement on Interaction between Two Immiscible Droplets and Turbulent Uniform shear Flow of Carrier Fluid,” Experimental Thermal and Fluid Science, 26, pp. 245252 (2002).
21. Grishin, A. M., Mathematical Modeling of Forest Fire and New Methods of Fighting them, Publishing House of Tomsk State University, Tomsk (1997).
22. Grishin, A. M., Sinitsyn, S. P. and Akimova, I. V., “Comparative Analysis of Thermokinetic Constant of Drying and Pyrolysis of Forest Fuels,” Combustion and Explosion Physics Journal, 27, pp. 1724 (1991).
23. Lautenberger, C. H. and Fernando-Pello, C. A., “A Model for the Oxidative Pyrolysis of Wood,” Combustion and Flame, 156, pp. 15031513 (2009).

Keywords

Amount of Water Sufficient to Suppress Thermal Decomposition of Forest Fuel

  • G. V. Kuznetsov (a1), P. A. Strizhak (a1), R. S. Volkov (a1) and A. O. Zhdanova (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed