Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-n95np Total loading time: 0.886 Render date: 2021-04-12T00:28:38.074Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Lamb Waves in Anisotropic Functionally Graded Plates: A Closed Form Dispersion Solution

Published online by Cambridge University Press:  08 August 2019

S. V. Kuznetsov
Affiliation:
Institute for Problems in Mechanics Bauman Moscow State Technical University Moscow State University of Civil Engineering Moscow, Russia
Corresponding
E-mail address:
Get access

Abstract

Propagation of harmonic Lamb waves in plates made of functionally graded materials (FGM) with transverse inhomogeneity is studied by combination of the Cauchy six-dimensional formalism and matrix exponential mapping. For arbitrary transverse inhomogeneity a closed form implicit solution for dispersion equation is derived and analyzed. Both the dispersion equation and the corresponding solution resemble ones obtained for stratified media. The dispersion equation and the corresponding solution are applicable to media with arbitrary elastic (monoclinic) anisotropy.

Type
Research Article
Copyright
Copyright © 2019 The Society of Theoretical and Applied Mechanics 

Access options

Get access to the full version of this content by using one of the access options below.

References

Liu, G.R., Tani, J., Ohyoshi, T., “Lamb waves in a functionally gradient material plates and its transient response. Part 1: Theory; Part 2: Calculation result”, Transactions of the Japan Society of Mechanical Engineers, 57A, 131–42 (1991)Google Scholar
Koizumi, M., “The concept of FGMCeramic Transactions: Functionally Gradient Materials. 34, 310 (1993)Google Scholar
Liu, G.R., Tani, J., “Surface waves in functionally gradient piezoelectric plates”, Transactions of the American Society of Mechanical Engineers, 116, 440448 (1994)Google Scholar
Miyamoto, Y., Kaysser, W.A., Brain, B.H., Kawasaki, A., Ford, R.G., “Functionally graded materialsKluwer, Academic Publishers (1999)CrossRefGoogle Scholar
Han, X., Liu, G.R., Lam, K.Y., Ohyoshi, T., “A quadratic layer element for analyzing stress waves in FGMs and its application in material characterization”, Journal of Sound and Vibration, 236, 307321 (2000)CrossRefGoogle Scholar
Vlasie, V., Rousseau, M., “Guide modes in a plane elastic layer with gradually continuous acoustic properties”, NDT&E International, 37, 633644 (2004)CrossRefGoogle Scholar
Baron, C., Naili, S., “Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization”, Journal of the Acoustical Society of America, 127(3), 13071317 (2010)CrossRefGoogle Scholar
Amor, M.B., Ghozlen, M.H.B., “Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method”, Ultrasonics, 4905, 15 (2014)Google Scholar
Nanda, N., Kapuria, S., “Spectral finite element for wave propagation analysis of laminated composite curved beams using classical and first order shear deformation theories”, Composite Structures, 132, 310320 (2015)CrossRefGoogle Scholar
Xu, Chao, Yu, Zexing, “Numerical simulation of elastic wave propagation in functionally graded cylinders using time-domain spectral finite element method”, Advances in Mechanical Engineering, 9(11), 117 (2017)CrossRefGoogle Scholar
Lefebvre, J.E., et al., “Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach”, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 48, 13321340 (2001)CrossRefGoogle ScholarPubMed
Qian, Z.H., Jin, F., Wang, Z.K., Kishimoto, K., “Transverse surface waves on a piezoelectric material carrying a functionally graded layer of finite thickness”, International Journal of EngineeringScience, 45, 455466 (2007)Google Scholar
Kielczynski, P., Szalewski, M., Balcerzak, A., Wieja, K., “Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials”, Ultrasonics, 65, 220227 (2016)CrossRefGoogle ScholarPubMed
Kielczynski, P. M., Szalewski, M., “An inverse method for determining the elastic properties of thin layers using Love surface waves”, Inverse Problems in Science and Engineering, 19, 3143 (2011).CrossRefGoogle Scholar
Kuznetsov, S.V., “Lamb waves in anisotropic plates (Review)”, Acoustical Physics, 60(1), 95103 (2014)CrossRefGoogle Scholar
Kuznetsov, S.V., “Love waves in stratified monoclinic media”, Quarterly of Applied Mathematics, 62, 749766 (2004)CrossRefGoogle Scholar
Djeran-Maigre, I., Kuznetsov, S.V., “Solitary SH waves in two-layered traction-free plates”, Comptes Rendus, Mécanique, 336, 102107 (2008)CrossRefGoogle Scholar
Chadwick, P., Smith, G.D., “Foundations of the theory of surface waves in anisotropic elastic materials”, Advances in Applied Mechanics, 17, 303376 (1977)CrossRefGoogle Scholar
Ting, T.C.T., Barnett, D.M., “Classifications of surface waves in anisotropic elastic materialsWave Motion, 26, 207218 (1997)CrossRefGoogle Scholar
Tanuma, K., “Stroh formalism and Rayleigh waves”, Journal of Elasticity, 89, 5154 (2007)CrossRefGoogle Scholar
Wang, L. & Rokhlin, S.I., “Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media”, Ultrasonics, 39, 413424 (2001)CrossRefGoogle ScholarPubMed
Ilyashenko, A., Kuznetsov, S., “SH waves in anisotropic (monoclinic) media”, Zeitschrift für angewandte Mathematik und Physik, 69, 17 (2018)CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 60 *
View data table for this chart

* Views captured on Cambridge Core between 08th August 2019 - 12th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Lamb Waves in Anisotropic Functionally Graded Plates: A Closed Form Dispersion Solution
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Lamb Waves in Anisotropic Functionally Graded Plates: A Closed Form Dispersion Solution
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Lamb Waves in Anisotropic Functionally Graded Plates: A Closed Form Dispersion Solution
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *