Skip to main content Accessibility help
×
Home

3D Elastostatic Boundary Element Analysis of thin bodies by Integral Regularizations

  • Y.-C. Shiah (a1)

Abstract

This paper presents a regularization scheme for the nearly singular integrals used for 3D elastostatic boundary element analysis. For the regularization process, the local projection coordinates of the source point are first located via an iteration procedure. For planar elements, the boundary integrals are analytically integrated by parts to smooth the drastic fluctuations of their integrands so that the regularized forms can be numerically integrated by any conventional schemes in an usual manner. The validity of the formulations is numerically tested using the Gauss Quadrature scheme. The test shows the accuracy is satisfactory for the distance ratio (distance: Element characteristic length) falling below micro-scale. To further demonstrate our successful implementation, a numerical example is studied with verifications compared with ANSYS analysis.

Copyright

Corresponding author

* Corresponding author (ycshiah@mail.ncku.edu.tw)

References

Hide All
1.Zozulya, V. V., “Divergent Integrals in Elastostatics: Regularization in 3-D Case,” Computer Modeling in Engineering & Sciences, 70, pp. 253349 (2010).
2.Chen, J. T. and Hong, H.-K., “Review of Dual Boundary Element Methods with Emphasis on Hypersingular Integrals and Divergent Series,” Applied Mechanics Reviews, 52, pp. 1733 (1999).
3.Guz, A. N. and Zozulya, V. V., “Fracture Dynamics with Allowance for a Crack Edges Contact Interaction,” International Journal of Nonlinear Sciences and Numerical Simulation, 2, pp. 173233 (2001).
4.Tanaka, M., Sladek, V. and Sladek, J., “Regularization Techniques Applied to Boundary Element Methods,” Applied Mechanics Reviews, 47, pp. 457499 (1994).
5.Granados, J. J. and Gallego, R., “Regularization of Nearly Hypersingular Integrals in the Boundary Element Method,” Engineering Analysis with Boundary Elements, 25, pp. 165184 (2001).
6.Tomioka, , Satoshi, and Nishiyama, Shusuke, “Analytical Regularization of Hypersingular Integral for Helmholtz Equation in Boundary Element Method,” Engineering Analysis with Boundary Elements, 34, pp. 393404 (2010).
7.de Lacerda, L. A. and Wrobel, L. C., “Hypersingular Boundary Integral Equation for Axisymmetric Elasticity,” International Journal for Numerical Methods in Engineering, 52, pp. 13371354 (2001).
8.Shiah, Y. C. and Shi, Y.-X., “Heat Conduction across Thermal Barrier Coatings of Anisotropic Substrates,” International Communications in Heat and Mass Transfer, 33, pp. 827835 (2006).
9.Shiah, Y. C., Chen, Y. H. and Kuo, W. S., “Analysis for the Interlaminar Stresses of Thin Layered Composites Subjected to Thermal Loads,” Composites Science and Technology, 67, pp. 24852492 (2007).
10.Shiah, Y. C., Hematiyan, M. R. and Chen, Y. H., “Regularization of the Boundary Integrals in the BEM Analysis of 3D Potential Problems,” Journal of Mechanics, 29, pp. 385401 (2013).
11. Wikipedia online, https://en.wikipedia.org/wiki/Quartic_function

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed