Skip to main content Accessibility help

With great structure comes great functionality: Understanding and emulating spider silk

  • Cameron P. Brown (a1), Alessandra D. Whaite (a2), Jennifer M. MacLeod (a3), Joanne Macdonald (a4) and Federico Rosei (a5)...


The overarching aim of biomimetic approaches to materials synthesis is to mimic simultaneously the structure and function of a natural material, in such a way that these functional properties can be systematically tailored and optimized. In the case of synthetic spider silk fibers, to date functionalities have largely focused on mechanical properties. A rapidly expanding body of literature documents this work, building on the emerging knowledge of structure–function relationships in native spider silks, and the spinning processes used to create them. Here, we describe some of the benchmark achievements reported until now, with a focus on the last five years. Progress in protein synthesis, notably the expression on full-size spidroins, has driven substantial improvements in synthetic spider silk performance. Spinning technology, however, lags behind and is a major limiting factor in biomimetic production. We also discuss applications for synthetic silk that primarily capitalize on its nonmechanical attributes, and that exploit the remarkable range of structures that can be formed from a synthetic silk feedstock.


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:


Hide All
1. Shear, W.A., Palmer, J.M., Coddington, J.A., and Bonamo, P.M.: A Devonian spinneret: Early evidence of spiders and silk use. Science 246, 479 (1989).
2. Gosline, J.M., Guerette, P.A., Ortlepp, C.S., and Savage, K.N.: The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295 (1999).
3. Vollrath, F. and Knight, D.P.: Liquid crystalline spinning of spider silk. Nature 410, 541 (2001).
4. Rising, A.: Controlled assembly: A prerequisite for the use of recombinant spider silk in regenerative medicine? Acta Biomater. 10, 1627 (2014).
5. Slotta, U., Mougin, N., Römer, L., and Leimer, A.H.: Synthetic spider silk proteins and threads. Chem. Eng. Prog. 108, 43 (2012).
6. Humenik, M., Smith, A.M., and Scheibel, T.: Recombinant spider silks—Biopolymers with potential for future applications. Polymers 3, 640 (2011).
7. Widhe, M., Johansson, J., Hedhammar, M., and Rising, A.: Current progress and limitations of spider silk for biomedical applications. Biopolymers 97, 468 (2012).
8. Tokareva, O., Jacobsen, M., Buehler, M., Wong, J., and Kaplan, D.L.: Structure–function–property–design interplay in biopolymers: Spider silk. Acta Biomater. 10, 1612 (2014).
9. Tokareva, O., Michalczechen-Lacerda, V.A., Rech, E.L., and Kaplan, D.L.: Recombinant DNA production of spider silk proteins. Microb. Biotechnol. 6, 651 (2013).
10. Widhe, M., Johansson, J., Hedhammar, M., and Rising, A.: Invited review: Current progress and limitations of spider silk for biomedical applications. Biopolymers 97, 468 (2012).
11. Bittencourt, D., Oliveira, P.F., Prosdocimi, F., and Rech, E.L.: Protein families, natural history and biotechnological aspects of spider silk. Genet. Mol. Res. 11, 2360 (2012).
12. Tarakanova, A. and Buehler, M.J.: A materiomics approach to spider silk: Protein molecules to webs. JOM 64, 214 (2012).
13. Yang, Y., Chen, X., Shao, Z., Zhou, P., Porter, D., Knight, D.P., and Vollrath, F.: Toughness of spider silk at high and low temperatures. Adv. Mat. 17, 84 (2005).
14. Pogozelski, E.M., Becker, W.L., See, B.D., and Kieffer, C.M.: Mechanical testing of spider silk at cryogenic temperatures. Int. J. Biol. Macromol. 48, 27 (2011).
15. Vollrath, F. and Porter, D.: Silks as ancient models for modern polymers. Polymer 50, 5623 (2009).
16. Agnarsson, I., Kuntner, M., and Blackledge, T.A.: Bioprospecting finds the toughest biological material: Extraordinary silk from a giant riverine orb spider. PLoS One 5, 1 (2010).
17. Gregorič, M., Agnarsson, I., Blackledge, T.A., and Kuntner, M.: Darwin's bark spider: Giant prey in giant orb webs (Caerostris darwini, Araneae: Araneidae)? J. Arachnol. 39, 287 (2011).
18. Agnarsson, I., Boutry, C., and Blackledge, T.A.: Spider silk aging: Initial improvement in a high performance material followed by slow degradation. J. Exp. Zool. A Ecol. Genet. Physiol. 309A, 494 (2008).
19. Swanson, B.O., Blackledge, T.A., Summers, A.P., and Hayashi, C.Y.: Spider dragline silk: Correlated and mosaic evolution in high-performance biological materials. Evolution 60, 2539 (2006).
20. Asrar, J. and Hill, J.C.: Biosynthetic processes for linear polymers. J. Appl. Polym. Sci. 83, 457 (2002).
21. Munch, E., Launey, M.E., Alsem, D.H., Saiz, E., Tomsia, A.P., and Ritchie, R.O.: Tough, bio-inspired hybrid materials. Science 322, 1516 (2008).
22. Brown, C.P., Harnagea, C., Gill, H.S., Price, A.J., Traversa, E., Licoccia, S., and Rosei, F.: Rough fibrils provide a toughening mechanism in biological fibers. ACS Nano 6, 1961 (2012).
23. Keten, S. and Buehler, M.J.: Geometric confinement governs the rupture strength of H-bond assemblies at a critical length scale. Nano Lett. 8, 743 (2008).
24. Sponner, A., Vater, W., Monajembashi, S., Unger, E., Grosse, F., and Weisshart, K.: Composition and hierarchical organisation of a spider silk. PLoS One 2, e998 (2007).
25. Koski, K.J., Akhenblit, P., McKiernan, K., and Yarger, J.L.: Non-invasive determination of the complete elastic moduli of spider silks. Nat. Mater. 12, 262 (2013).
26. Xu, M. and Lewis, R.V.: Structure of a protein superfiber: Spider dragline silk. Proc. Natl. Acad. Sci. U. S. A. 87, 7120 (1990).
27. Heim, M., Romer, L., and Scheibel, T.: Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins. Chem. Soc. Rev. 39, 156 (2010).
28. Simmons, A.H., Michal, C.A., and Jelinski, L.W.: Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84 (1996).
29. Bonev, B., Grieve, S., Herberstein, M.E., Kishore, A.I., Watts, A., and Separovic, F.: Orientational order of Australian spider silks as determined by solid-state NMR. Biopolymers 82, 134 (2006).
30. van Beek, J.D., Hess, S., Vollrath, F., and Meier, B.H.: The molecular structure of spider dragline silk: Folding and orientation of the protein backbone. Proc. Natl. Acad. Sci. U. S. A. 99, 10266 (2002).
31. Vollrath, F. and Porter, D.: Spider silk as archetypal protein elastomer. Soft Matter 2, 377 (2006).
32. Liu, X.Y., Sponner, A., Porter, D., and Vollrath, F.: Proline and processing of spider silks. Biomacromolecules 9, 116 (2008).
33. Savage, K.N. and Gosline, J.M.: The role of proline in the elastic mechanism of hydrated spider silks. J. Exp. Biol. 211, 1948 (2008).
34. Savage, K.N. and Gosline, J.M.: The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties. J. Exp. Biol. 211, 1937 (2008).
35. Brown, C.P., MacLeod, J., Amenitsch, H., Cacho-Nerin, F., Gill, H.S., Price, A.J., Traversa, E., Licoccia, S., and Rosei, F.: The critical role of water in spider silk and its consequence for protein mechanics. Nanoscale 3, 3805 (2011).
36. Guan, J., Porter, D., and Vollrath, F.: Silks cope with stress by tuning their mechanical properties under load. Polymer 53, 2717 (2012).
37. Porter, D., Vollrath, F., and Shao, Z.: Predicting the mechanical properties of spider silk as a model nanostructured polymer. Eur. Phys. J. E: Soft Matter Biol. Phys. 16, 199 (2005).
38. Mortimer, B., Gordon, S.D., Holland, C., Siviour, C.R., Vollrath, F., and Windmill, J.F.C.: The speed of sound in silk: Linking material performance to biological function. Adv. Mat. 26, 5179 (2014).
39. Keten, S. and Buehler, M.J.: Strength limit of entropic elasticity in beta-sheet protein domains. Phys. Rev. E 78, 061913 (2008).
40. Keten, S. and Buehler, M.J.: Atomistic model of the spider silk nanostructure. Appl. Phys. Lett. 96, 153701 (2010).
41. Keten, S., Xu, Z., Ihle, B., and Buehler, M.J.: Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat. Mater. 9, 359 (2010).
42. Qin, Z. and Buehler, M.J.: Cooperative deformation of hydrogen bonds in beta-strands and beta-sheet nanocrystals. Phys. Rev. E 82, 061906 (2010).
43. Keten, S. and Buehler, M.J.: Nanostructure and molecular mechanics of dragline spider silk protein assemblies. J. Roy. Soc. Interface 7, 1709 (2010).
44. Patil, Sandeep P., Markert, B., and Gräter, F.: Rate-dependent behavior of the amorphous phase of spider dragline silk. Biophys. J. 106, 2511 (2014).
45. Giesa, T., Arslan, M., Pugno, N.M., and Buehler, M.J.: Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Lett. 11, 5038 (2011).
46. Cranford, S.W.: Increasing silk fibre strength through heterogeneity of bundled fibrils. J. R. Soc. Interface 10, 20130148 (2013).
47. Xu, G., Gong, L., Yang, Z., and Liu, X.Y.: What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. Soft Matter 10, 2116 (2014).
48. Krishnaji, S.T., Bratzel, G., Kinahan, M.E., Kluge, J.A., Staii, C., Wong, J.Y., Buehler, M.J., and Kaplan, D.L.: Sequence–structure–property relationships of recombinant spider silk proteins: Integration of biopolymer design, processing, and modeling. Adv. Funct. Mater. 23, 241 (2013).
49. Wong, J.Y., McDonald, J., Taylor-Pinney, M., Spivak, D.I., Kaplan, D.L., and Buehler, M.J.: Materials by design: Merging proteins and music. Nano Today 7, 488 (2012).
50. Holland, C., Vollrath, F., Ryan, A.J., and Mykhaylyk, O.O.: Silk and synthetic polymers: Reconciling 100 degrees of separation. Adv. Mater. 24, 105 (2012).
51. Vollrath, F., Porter, D., and Holland, C.: There are many more lessons still to be learned from spider silks. Soft Matter 7, 9595 (2011).
52. Heidebrecht, A and Scheibel, T.: Recombinant production of spider silk proteins. Adv. Appl. Microbiol. 82, 115 (2013).
53. Ayoub, N.A., Garb, J.E., Kuelbs, A., and Hayashi, C.Y.: Ancient properties of spider silks revealed by the complete gene sequence of the prey-wrapping silk protein (AcSp1). Mol. Biol. Evol. 30, 589 (2013).
54. Chinali, A., Vater, W., Rudakoff, B., Sponner, A., Unger, E., Grosse, F., Guehrs, K.H., and Weisshart, K.: Containment of extended length polymorphisms in silk proteins. J. Mol. Evol. 70, 325 (2010).
55. Ayoub, N.A., Garb, J.E., Tinghitella, R.M., Collin, M.A., and Hayashi, C.Y.: Blueprint for a high-performance biomaterial: Full-length spider dragline silk genes. PLoS One 2, e514 (2007).
56. Zhang, Y., Zhao, A.C., Sima, Y.H., Lu, C., Xiang, Z.H., and Nakagaki, M.: The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: A second blueprint for synthesizing de novo silk. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 164, 151 (2013).
57. Sanggaard, K.W., Bechsgaard, J.S., Fang, X., Duan, J., Dyrlund, T.F., Gupta, V., Jiang, X., Cheng, L., Fan, D., Feng, Y., Han, L., Huang, Z., Wu, Z., Liao, L., Settepani, V., Thogersen, I.B., Vanthournout, B., Wang, T., Zhu, Y., Funch, P., Enghild, J.J., Schauser, L., Andersen, S.U., Villesen, P., Schierup, M.H., Bilde, T., and Wang, J.: Spider genomes provide insight into composition and evolution of venom and silk. Nat. Commun. 5, 3765 (2014).
58. Tai, P.L., Hwang, G.Y., and Tso, I.M.: Inter-specific sequence conservation and intra-individual sequence variation in a spider silk gene. Int. J. Biol. Macromol. 34, 295 (2004).
59. Beckwitt, R. and Arcidiacono, S.: Sequence conservation in the C-terminal region of spider silk proteins (Spidroin) from Nephila clavipes (tetragnathidae) and Araneus bicentenarius (Araneidae). J. Biol. Chem. 269, 6661 (1994).
60. Askarieh, G., Hedhammar, M., Nordling, K., Saenz, A., Casals, C., Rising, A., Johansson, J., and Knight, S.D.: Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465, 236 (2010).
61. Gronau, G., Qin, Z., and Buehler, M.J.: Effect of sodium chloride on the structure and stability of spider silk's N-terminal protein domain. Biomater. Sci. 1, 276 (2013).
62. Hagn, F., Eisoldt, L., Hardy, J.G., Vendrely, C., Coles, M., Scheibel, T., and Kessler, H.: A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239 (2010).
63. Prosdocimi, F., Bittencourt, D., da Silva, F.R., Kirst, M., Motta, P.C., and Rech, E.L.: Spinning gland transcriptomics from two main clades of spiders (order: Araneae)—Insights on their molecular, anatomical and behavioral evolution. PLoS One 6, e21634 (2011).
64. Clarke, T.H., Garb, J.E., Hayashi, C.Y., Haney, R.A., Lancaster, A.K., Corbett, S., and Ayoub, N.A.: Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics 15, 365 (2014).
65. Foelix, R.F.: The Biology of Spiders (Oxford University Press, New York, 1996). p. 336.
66. Lefèvre, T., Boudreault, S., Cloutier, C., and Pézolet, M.: Diversity of molecular transformations involved in the formation of spider silks. J. Mol. Biol. 405, 238 (2011).
67. Knight, D. and Vollrath, F.: Hexagonal columnar liquid crystal in the cells secreting spider silk. Tissue Cell 31, 617 (1999).
68. Hijirida, D.H., Do, K.G., Michal, C., Wong, S., Zax, D., and Jelinski, L.W.: 13C NMR of Nephila clavipes major ampullate silk gland. Biophys. J. 71, 3442 (1996).
69. Jin, H.J. and Kaplan, D.L.: Mechanism of silk processing in insects and spiders. Nature 424, 1057 (2003).
70. Rammensee, S., Slotta, U., Scheibel, T., and Bausch, A.R.: Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. U. S. A. 105, 6590 (2008).
71. Vollrath, F., Hawkins, N., Porter, D., Holland, C., and Boulet-Audet, M.: Differential scanning fluorimetry provides high throughput data on silk protein transitions. Sci. Rep. 4, 5625 (2014).
72. Hardy, J.G., Römer, L.M., and Scheibel, T.R.: Polymeric materials based on silk proteins. Polymer 49, 4309 (2008).
73. Vollrath, F. and Knight, D.P.: Structure and function of the silk production pathway in the spider Nephila edulis. Int. J Biol. Macromol. 24, 243 (1999).
74. Leclerc, J., Lefèvre, T., Gauthier, M., Gagné, S.M., and Auger, M.: Hydrodynamical properties of recombinant spider silk proteins: Effects of pH, salts and shear, and implications for the spinning process. Biopolymers 99, 582 (2013).
75. Kovoor, J. and Munoz-Cuevas, A.: Structure and function of the silk-gland system in Oxyopidae (Araneae). In Proceedings of the 17th European Colloquium of Arachnology, Edinburgh 1997, 1998; p. 133.
76. Garrido, M.A., Elices, M., Viney, C., and Pérez-Rigueiro, J.: Active control of spider silk strength: Comparison of drag line spun on vertical and horizontal surfaces. Polymer 43, 1537 (2002).
77. Griffith, A.A.: The phenomena of rupture and flow in solids. Phil. Trans. R. Soc. A 221, 163 (1921).
78. Teulé, F., Cooper, A.R., Furin, W.A., Bittencourt, D., Rech, E.L., Brooks, A., and Lewis, R.V.: A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat. Protoc. 4, 341 (2009).
79. Menassa, R., Zhu, H., Karatzas, C.N., Lazaris, A., Richman, A., and Brandle, J.: Spider dragline silk proteins in transgenic tobacco leaves: Accumulation and field production. Plant Biotechnol. J. 2, 431 (2004).
80. Fahnestock, S.R. and Bedzyk, L.A.: Production of synthetic spider dragline silk protein in Pichia pastoris. Appl. Microbiol. Biotechnol. 47, 33 (1997).
81. Teulé, F., Miao, Y-G., Sohn, B-H., Kim, Y-S., Hull, J.J., Fraser, M.J., Lewis, R.V., and Jarvis, D.L.: Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. Proc. Natl. Acad. Sci. U.S.A. 109, 923 (2012).
82. Steinkraus, H.B., Rothfuss, H., Jones, J.A., Dissen, E., Shefferly, E., and Lewis, R.V.: The absence of detectable fetal microchimerism in nontransgenic goats (Capra aegagrus hircus) bearing transgenic offspring. J. Anim. Sci. 90, 481 (2012).
83. Lazaris, A., Arcidiacono, S., Huang, Y., Zhou, J-F., Duguay, F., Chretien, N., Welsh, E.A., Soares, J.W., and Karatzas, C.N.: Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295, 472 (2002).
84. Leclerc, J., Lefèvre, T., Pottier, F., Morency, L.P., Lapointe-Verreault, C., Gagné, S.M., and Auger, M.: Structure and pH-induced alterations of recombinant and natural spider silk proteins in solution. Biopolymers 97, 337 (2012).
85. Xia, X-X., Qian, Z-G., Ki, C.S., Park, Y.H., Kaplan, D.L., and Lee, S.Y.: Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc. Natl. Acad. Sci. U. S. A. 107, 14059 (2010).
86. Fahnestock, S.R., Yao, Z., and Bedzyk, L.A.: Microbial production of spider silk proteins. Rev. Mol. Biotechnol. 74, 105 (2000).
87. Widmaier, D.M., Tullman‐Ercek, D., Mirsky, E.A., Hill, R., Govindarajan, S., Minshull, J., and Voigt, C.A.: Engineering the Salmonella type III secretion system to export spider silk monomers. Mol. Syst. Biol. 5, 308 (2009).
88. Widmaier, D.M. and Voigt, C.A.: Quantification of the physiochemical constraints on the export of spider silk proteins by Salmonella type III secretion. Microb. Cell Fact. 9, 78 (2010).
89. Goncalves, A.M., Pedro, A.Q., Maia, C., Sousa, F., Queiroz, J.A., and Passarinha, L.A.: Pichia pastoris: A recombinant microfactory for antibodies and human membrane proteins. J. Microbiol. Biotechnol. 23, 587 (2013).
90. Hauptmann, V., Weichert, N., Rakhimova, M., and Conrad, U.: Spider silks from plants—A challenge to create native-sized spidroins. Biotechnol. J. 8, 1183 (2013).
91. Grip, S., Rising, A., Nimmervoll, H., Storckenfeldt, E., Mcqueen-Mason, S.J., Pouchkina-Stantcheva, N., Vollrath, F., Engström, W., and Fernandez-Arias, A.: Transient expression of a major ampullate spidroin 1 gene fragment from Euprosthenops sp. in mammalian cells. Cancer Genom. Proteom. 3, 83 (2006).
92. Weichert, N., Hauptmann, V., Menzel, M., Schallau, K., Gunkel, P., Hertel, T.C., Pietzsch, M., Spohn, U., and Conrad, U.: Transglutamination allows production and characterization of native-sized ELPylated spider silk proteins from transgenic plants. Plant Biotechnol. J. 12, 265 (2014).
93. Xu, H-T., Fan, B-L., Yu, S-Y., Huang, Y-H., Zhao, Z-H., Lian, Z-X., Dai, Y-P., Wang, L-L., Liu, Z-L., Fei, J., and Li, N.: Construct synthetic gene encoding artificial spider dragline silk protein and its expression in milk of transgenic mice. Ani. Biotechnol. 18, 1 (2007).
94. Elices, M., Guinea, G.V., Plaza, G.R., Karatzas, C., Riekel, C., Agulló-Rueda, F., Daza, R., and Pérez-Rigueiro, J.: Bioinspired fibers follow the track of natural spider silk. Macromolecules 44, 1166 (2011).
95. Zhang, Y., Hu, J., Miao, Y., Zhao, A., Zhao, T., Wu, D., Liang, L., Miikura, A., Shiomi, K., Kajiura, Z., and Nakagaki, M.: Expression of EGFP-spider dragline silk fusion protein in BmN cells and larvae of silkworm showed the solubility is primary limit for dragline proteins yield. Mol. Biol. Rep. 35, 329 (2008).
96. Schacht, K. and Scheibel, T.: Processing of recombinant spider silk proteins into tailor-made materials for biomaterials applications. Curr. Opin. Biotechnol. 29, 62 (2014).
97. Domachuk, P., Tsioris, K., Omenetto, F.G., and Kaplan, D.L.: Bio-microfluidics: Biomaterials and biomimetic designs. Adv. Mater. 22, 249 (2010).
98. Daniel, H. and Thomas, S.: Method and device for producing a thread from silk proteins. U.S. Patent No. 7,868,146. 11 January 2011.
99. Knight, D.P. and Pinnock, L.: Method and apparatus for forming objects. WO Patent App. PCT/EP2003/014,787. 8 July 2004.
100. Kinahan, M.E., Filippidi, E., Köster, S., Hu, X., Evans, H.M., Pfohl, T., Kaplan, D.L., and Wong, J.: Tunable silk: Using microfluidics to fabricate silk fibers with controllable properties. Biomacromolecules 12, 1504 (2011).
101. Luo, J., Zhang, L., Peng, Q., Sun, M., Zhang, Y., Shao, H., and Hu, X.: Tough silk fibers prepared in air using a biomimetic microfluidic chip. Int. J Biol. Macromol. 66, 319 (2014).
102. Davies, G.J.G., Knight, D.P., and Vollrath, F.: Structure and function of the major ampullate spinning duct of the golden orb weaver, Nephila edulis. Tissue Cell 45, 306 (2013).
103. Renberg, B., Andersson-Svahn, H., and Hedhammar, M.: Mimicking silk spinning in a microchip. Sens. Actuators B 195, 404 (2014).
104. Holland, C., Terry, A.E., Porter, D., and Vollrath, F.: Natural and unnatural silks. Polymer 48, 3388 (2007).
105. Chen, X., Knight, D.P., and Vollrath, F.: Rheological characterization of Nephila spidroin solution. Biomacromolecules 3, 644 (2002).
106. Vollrath, F., Knight, D.P., and Hu, X.W.: Silk production in a spider involves acid bath treatment. Phil. Trans. R. Soc. B 265, 817 (1998).
107. Shao, Z., Vollrath, F., Yang, Y., and Thøgersen, H.C.: Structure and behavior of regenerated spider silk. Macromolecules 36, 1157 (2003).
108. Seidel, A., Liivak, O., Calve, S., Adaska, J., Ji, G., Yang, Z., Grubb, D., Zax, D.B., and Jelinski, L.W.: Regenerated spider silk: Processing, properties, and structure. Macromolecules 33, 775 (2000).
109. Inoue, S., Tanaka, K., Arisaka, F., Kimura, S., Ohtomo, K., and Mizuno, S.: Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J. Biol. Chem. 275, 40517 (2000).
110. Breslauer, D.N., Lee, L.P., and Muller, S.J.: Simulation of flow in the silk gland. Biomacromolecules 10, 49 (2008).
111. Porter, D., Guan, J., and Vollrath, F.: Spider silk: Super material or thin fibre? Adv. Mater. 25, 1275 (2013).
112. Huang, Z., Lu, Y., Majithia, R., Shah, J., Meissner, K., Matthews, K.S., Bondos, S.E., and Lou, J.: Size dictates mechanical properties for protein fibers self-assembled by the Drosophila hox transcription factor ultrabithorax. Biomacromolecules 11, 3644 (2010).
113. Smook, J., Hamersma, W., and Pennings, A.J.: The fracture process of ultra-high strength polyethylene fibres. J. Mat. Sci. 19, 1359 (1984).
114. Amornsakchai, T., Cansfield, D., Jawad, S., Pollard, G., and Ward, I.: The relation between filament diameter and fracture strength for ultra-high-modulus polyethylene fibres. J. Mat. Sci. 28, 1689 (1993).
115. Wagner, H.D.: Dependence of fracture stress upon diameter in strong polymeric fibers. J. Macromol. Sci. Phys. 28, 339 (1989).
116. Wagner, H.: Stochastic concepts in the study of size effects in the mechanical strength of highly oriented polymeric materials. J. Polym. Sci. Part B Polym. Phys. 27, 115 (1989).
117. Chae, H.G., Choi, Y.H., Minus, M.L., and Kumar, S.: Carbon nanotube reinforced small diameter polyacrylonitrile based carbon fiber. Composites Sci. Technol. 69, 406 (2009).
118. Ji, Y., Li, B., Ge, S., Sokolov, J.C., and Rafailovich, M.H.: Structure and nanomechanical characterization of electrospun PS/clay nanocomposite fibers. Langmuir 22, 1321 (2006).
119. Young, K., Blighe, F.M., Vilatela, J.J., Windle, A.H., Kinloch, I.A., Deng, L., Young, R.J., and Coleman, J.N.: Strong dependence of mechanical properties on fiber diameter for polymer–nanotube composite fibers: Differentiating defect from orientation effects. ACS Nano 4, 6989 (2010).
120. Mackenzie, D.: The history of sutures. Med. Hist. 17, 158 (1973).
121. Gellynck, K., Verdonk, P., Forsyth, R., Almqvist, K.F., Van Nimmen, E., Gheysens, T., Mertens, J., Van Langenhove, L., Kiekens, P., and Verbruggen, G.: Biocompatibility and biodegradability of spider egg sac silk. J. Mater. Sci. Mater. Med. 19, 2963 (2008).
122. Vollrath, F.: Strength and structure of spiders' silks. J. Biotechnol. 74, 67 (2000).
123. Altman, G.H., Diaz, F., Jakuba, C., Calabro, T., Horan, R.L., Chen, J., Lu, H., Richmond, J., and Kaplan, D.L.: Silk-based biomaterials. Biomaterials 24, 401 (2003).
124. Meinel, L., Hofmann, S., Karageorgiou, V., Kirker-Head, C., McCool, J., Gronowicz, G., Zichner, L., Langer, R., Vunjak-Novakovic, G., and Kaplan, D.L.: The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26, 147 (2005).
125. Hardy, J.G. and Scheibel, T.R.: Composite materials based on silk proteins. Prog. Polym. Sci. 35, 1093 (2010).
126. Rockwood, D.N., Preda, R.C., Yücel, T., Wang, X., Lovett, M.L., and Kaplan, D.L.: Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 6, 1612 (2011).
127. Jin, H-J., Chen, J., Karageorgiou, V., Altman, G.H., and Kaplan, D.L.: Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25, 1039 (2004).
128. Nazarov, R., Jin, H-J., and Kaplan, D.L.: Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5, 718 (2004).
129. Hofmann, S., Wong Po Foo, C., Rossetti, F., Textor, M., Vunjak-Novakovic, G., Kaplan, D., Merkle, H., and Meinel, L.: Silk fibroin as an organic polymer for controlled drug delivery. J. Control. Release 111, 219 (2006).
130. Hermanson, K.D., Huemmerich, D., Scheibel, T., and Bausch, A.R.: Engineered microcapsules fabricated from reconstituted spider silk. Adv. Mater. 19, 1810 (2007).
131. Gomes, S.C., Leonor, I.B., Mano, J.F., Reis, R.L., and Kaplan, D.L.: Antimicrobial functionalized genetically engineered spider silk. Biomaterials 32, 4255 (2011).
132. Kim, D-H., Viventi, J., Amsden, J.J., Xiao, J., Vigeland, L., Kim, Y-S., Blanco, J.A., Panilaitis, B., Frechette, E.S., and Contreras, D.: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511 (2010).
133. Kim, S., Mitropoulos, A.N., Spitzberg, J.D., Tao, H., Kaplan, D.L., and Omenetto, F.G.: Silk inverse opals. Nat. Photonics 6, 818 (2012).
134. MacLeod, J. and Rosei, F.: Photonic crystals: Sustainable sensors from silk. Nat. Mater. 12, 98 (2013).
135. Diao, Y.Y., Liu, X.Y., Toh, G.W., Shi, L., and Zi, J.: Multiple structural coloring of silk‐fibroin photonic crystals and humidity‐responsive color sensing. Adv. Funct. Mat. 23, 5373 (2013).
136. Lawrence, B.D., Cronin-Golomb, M., Georgakoudi, I., Kaplan, D.L., and Omenetto, F.G.: Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 9, 1214 (2008).
137. Amsden, J.J., Perry, H., Boriskina, S.V., Gopinath, A., Kaplan, D.L., Dal Negro, L., and Omenetto, F.G.: Spectral analysis of induced color change on periodically nanopatterned silk films. Opt. Express 17, 21271 (2009).
138. Amsden, J.J., Domachuk, P., Gopinath, A., White, R.D., Negro, L.D., Kaplan, D.L., and Omenetto, F.G.: Rapid nanoimprinting of silk fibroin films for biophotonic applications. Adv. Mater. 22, 1746 (2010).
139. Huang, X., Liu, G., and Wang, X.: New secrets of spider silk: Exceptionally high thermal conductivity and its abnormal change under stretching. Adv. Mater. 24, 1482 (2012).
140. Fuente, R., Mendioroz, A., and Salazar, A.: Revising the exceptionally high thermal diffusivity of spider silk. Mater. Lett. 114, 1 (2014).
141. Zhang, L., Chen, T., Ban, H., and Liu, L.: Hydrogen bonding-assisted thermal conduction in β-sheet crystals of spider silk protein. Nanoscale 6, 7786 (2014).
142. Tulachan, B., Meena, S.K., Rai, R.K., Mallick, C., Kusurkar, T.S., Teotia, A.K., Sethy, N.K., Bhargava, K., Bhattacharya, S., Kumar, A., Sharma, R.K., Sinha, N., Singh, S.K., and Das, M.: Electricity from the silk cocoon membrane. Sci. Rep. 4, 5434 (2014).
143. Brown, C.P., Rosei, F., Traversa, E., and Licoccia, S.: Spider silk as a load-bearing biomaterial: Tailoring mechanical properties via structural modifications. Nanoscale 3, 870 (2011).
144. Work, R.W.: Viscoelastic behaviour and wet supercontraction of major ampullate silk fibres of certain orb-web-building spiders (Araneae). J. Exp. Biol. 118, 379 (1985).
145. Liu, Y., Shao, Z., and Vollrath, F.: Relationships between supercontraction and mechanical properties of spider silk. Nat. Mater. 4, 901 (2005).


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed