Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-26T17:33:10.408Z Has data issue: false hasContentIssue false

Void Nucleation in Passivated Interconnect Lines: Effects of Site Geometries, Interfaces, and Interface Flaws

Published online by Cambridge University Press:  31 January 2011

R. J. Gleixner
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205
B. M. Clemens
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205
W. D. Nix
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-2205
Get access

Abstract

Stress driven nucleation of voids in passivated aluminum interconnect lines is analyzed within the context of classical nucleation theory. A discussion of sources of tensile stress in such lines leads to an upper limit of 2 GPa. Calculations suggest that even at this high stress, nucleation rates are far too low to account for observed rates of voiding. Void formation at a circular defect at the line/passivation interface is then considered. In this case, a flaw on the order of nanometers in size may develop into a void under the imposed stress. These results strongly suggest that void nucleation in aluminum interconnect lines can be controlled by eliminating defects in the line/passivation interface.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Materials Reliability in Microelectronics III, edited by Rodbell, K. P., Filter, W. F., Frost, H. J., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 309, Pittsburgh, PA, 1993).Google Scholar
2.Stress-Induced Phenomena in Metallization: 2nd Int. Workshop, edited by Ho, P. S., C-Y., Li, and Totta, P. (American Institute of Physics, New York, 1994).Google Scholar
3.Børgesen, P., Lee, J. K., Gleixner, R. J., and Li, C-Y., Appl. Phys. Lett. 60, 1706 (1992).CrossRefGoogle Scholar
4.Korhonen, M. A., Paskiet, C. A., and Li, C-Y., J. Appl. Phys. 69, 12 (1991).Google Scholar
5.Korhonen, M. A., Børgesen, P., Brown, D. D., Li, C-Y., Sullivan, T. D., and Totta, P. A., in Stress-Induced Phenomena in Metallization: 2nd Int. Workshop, edited by Ho, P. S., C-Y., Li, and Totta, P. A. (American Institute of Physics, New York, 1994), pp. 1532.Google Scholar
6.Bower, A. F. and Freund, L. B., In Stress-Induced Phenomena in Metallization: 2nd Int. Workshop, edited by Ho, P. S., C-Y., Li, and Totta, P. A. (American Institute of Physics, New York, 1994), pp. 137152.Google Scholar
7.Trattles, J. T., O'Neill, A. G., and Mecrow, B. C., J. Appl. Phys. 75, 7799 (1994).CrossRefGoogle Scholar
8.Arzt, E., Kraft, O., and Möckl, U. E., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E., Jr., and P., Børgesen (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), pp. 397408.Google Scholar
9.Greenbaum, B., Sauter, A. I., Flinn, P. A., and Nix, W. D., Appl. Phys. Lett. 58, 1845 (1991).CrossRefGoogle Scholar
10.Sauter, A. I., Ph.Dissertation, D., Stanford University, 1991.Google Scholar
11.Sauter, A. I. and Nix, W. D., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M. F., Oliver, W. C., Pharr, G. M., and Brotzen, F. R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), pp. 1520.Google Scholar
12.Flinn, P. A. and Chiang, C., J. Appl. Phys. 67, 2927 (1990).CrossRefGoogle Scholar
13.Nix, W. D. and Arzt, E., Metall. Trans. A 23A, 2007 (1992).CrossRefGoogle Scholar
14.Sauter, A. I. PhDissertation, D., Stanford University, 1991, Chap. 4.Google Scholar
15.Öveçoğlu, M. L., Doerner, M. F., and Nix, W. D., Acta Metall. Mater. 35, 2947 (1987).CrossRefGoogle Scholar
16.Raj, R. and Ashby, M. F., Acta Metall. Mater. 23, 653 (1975).CrossRefGoogle Scholar
17.Hirth, J. P. and Nix, W. D., Acta Metall. Mater. 33, 359 (1985).CrossRefGoogle Scholar
18.Arzt, E., Kraft, O., Nix, W. D., and Sanchez, J. E., Jr., J. Appl. Phys. 76, 1563 (1994).CrossRefGoogle Scholar
19.Hirth, J. P. and Nix, W. D., Acta Metall. Mater. 33, 359 (1985).CrossRefGoogle Scholar
20.Marieb, T. (private communication).Google Scholar
21.Marieb, T., Abratowski, E., Bravman, J. C., Madden, M., and Flinn, P., in Stress-Induced Phenomena in Metallization: 2nd Int. Workshop, edited by Ho, P. S., C-Y., Li, and Totta, P. A. (American Institute of Physics, New York, 1994), pp. 114.Google Scholar
22.Porter, D. A. and Easterling, K. E., Phase Transformations in Metals and Alloys (Chapman and Hall, London, 1981), Chap. 4.Google Scholar
23.Flinn, P. A., MRS Bulletin XX (11), 70 (1995).CrossRefGoogle Scholar
24.Wada, T., Sugimoto, M., and Ajiki, T., IEEE Transactions on Reliability 38, 565 (1989).CrossRefGoogle Scholar
25.Abe, H., Tanabe, S., Kondo, Y., and Ikubo, M., in Japan Society of Applied Physics, 39th Spring Meeting (1992), p. 6588.Google Scholar
26.Murarka, S. P. and Peckerar, M. C., Electronic Materials: Science and Technology (Academic Press, San Diego, CA, 1989), pp. 522523.Google Scholar
27.Clemens, B. M., Nix, W. D., and Gleixner, R. J., J. Mater. Res. (in press).Google Scholar
28.Chuang, T-A., Kagawa, K. I., Rice, J. R., and Sills, L. B., Acta Metall. Mater. 27, 265 (1979).CrossRefGoogle Scholar
29.Marieb, T., Bravman, J. C., Flinn, P., Gardner, D. S., and Madden, M., Appl. Phys. Lett. 64, 2429 (1994).CrossRefGoogle Scholar
30.Frost, H. J. and Ashby, M., Deformation-Mechanism Maps (Pergamon, Oxford, 1982), p. 21.Google Scholar
31.Christian, J. W., The Theory of Transformations in Metals and Alloys: Part I (Pergamon, Oxford, 1975), Chap. 10.Google Scholar