Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T00:34:15.954Z Has data issue: false hasContentIssue false

The virtuous potential of chitosan oligosaccharide for promising biomedical applications

Published online by Cambridge University Press:  21 April 2020

Ashwini Kumar
Affiliation:
Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh 492010, India
Awanish Kumar*
Affiliation:
Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh 492010, India
*
a)Address all correspondence to this author. e-mail: awanik.bt@nitrr.ac.in, drawanishkr@gmail.com
Get access

Abstract

Chitosan is one of the most versatile biopolymers available with established properties such as antimicrobial, antitumor, anti-inflammatory, mucoadhesive, and more. It has been in biomedical research for long, but still the bench-to-bedside translation is hampered because of viscosity and solubility issues. The only commercial application of chitosan has been in hemostatic dressings. Chitosan oligosaccharide (COS), on the other hand, is highly promising in a similar research area where chitosan's limitations come into the way. COS is highly soluble in water, and its viscosity is very less than that of the parent chitosan. Although COS retains properties very similar to those of chitosan, there has been minuscule volume of research on this water-soluble chitosan. COS has been successfully used as a drug delivery vehicle in various research. COS has also shown to have osteogenic ability. It has been used as a coating on experimental orthopedic implants because of its antibacterial properties. As of now, COS is not a much-explored biopolymer, although it could be an important biopolymer for its capacity in biomedical research. This article reviews various properties and reports of COS relevant for biomedical applications.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Cheung, R.C.F., Ng, T.B., Wong, J.H., and Chan, W.Y.: Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs 14, 51565186 (2015).CrossRefGoogle Scholar
Sundaram, J., Pant, J., Goudie, M.J., Mani, S., and Handa, H.: Antimicrobial and physicochemical characterization of biodegradable, nitric oxide- releasing nanocellulose-chitosan packaging membranes. J. Agric. Food Chem. 64, 52605266 (2016).CrossRefGoogle ScholarPubMed
Ravi Kumar, M.N.: A review of chitin and chitosan applications. React. Funct. Polym. 46, 127 (2000).CrossRefGoogle Scholar
Xia, W., Liu, P., Zhang, J., and Chen, J.: Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloids 25, 170179 (2011).CrossRefGoogle Scholar
Kumar, A., Vimal, A., and Kumar, A.: Why chitosan? From properties to perspective of mucosal drug delivery. Int. J. Biol. Macromol. 91, 615622 (2016).CrossRefGoogle ScholarPubMed
Rodríguez-Vázquez, M., Vega-Ruiz, B., Ramos-Zúñiga, R., Saldaña-Koppel, D.A., and Quiñones-Olvera, L.F.: Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. BioMed Res. Int. 2015, 821279 (2015).CrossRefGoogle ScholarPubMed
Pant, J., Sundaram, J., Goudie, M.J., Nguyen, D.T., and Handa, H.: Antibacterial 3D bone scaffolds for tissue engineering application. J. Biomed. Mater. Res. B Appl. Biomater. 107, 10681078 (2018).CrossRefGoogle ScholarPubMed
Zargar, V., Asghari, M., and Dashti, A.: A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev. 2, 204226 (2015).CrossRefGoogle Scholar
Pogorielov, M., Kalinkevich, O., Deineka, V., Garbuzova, V., Solodovnik, A., Kalinkevich, A., Kalinichenko, T., Gapchenko, A., Sklyar, A., and Danilchenko, S.: Haemostatic chitosan coated gauze: In vitro interaction with human blood and in vivo effectiveness. Biomater. Res. 19, 110 (2015).CrossRefGoogle ScholarPubMed
Szymanska, E. and Winnicka, K.: Stability of chitosan—A challenge for pharmaceutical and biomedical applications. Mar. Drugs 13, 18191846 (2015).CrossRefGoogle ScholarPubMed
Lodhi, G., Kim, Y.S., Hwang, J.W., Kim, S.K., Jeon, Y.J., Je, J.Y., Ahn, C.B., Moon, S.H., Jeon, B.T., and Park, P.J.: Chitooligosaccharide and its derivatives: Preparation and biological applications. BioMed Res. Int. 2014, 113 (2014).Google ScholarPubMed
Muanprasat, C. and Chatsudthipong, V.: Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol. Ther. 170, 8097 (2017).CrossRefGoogle ScholarPubMed
Jung, W.J. and Park, R.D.: Bioproduction of chitooligosaccharides: Present and perspectives. Mar. Drugs 12, 53285356 (2014).CrossRefGoogle Scholar
Liaqat, F. and Eltem, R.: Chitooligosaccharides and their biological activities: A comprehensive review. Carbohydr. Polym. 184, 243259 (2018).CrossRefGoogle ScholarPubMed
Liang, S., Sun, Y., and Dai, X.: A review of the preparation, analysis and biological functions of chitooligosaccharide. Int. J. Mol. Sci. 19, E2197 (2018).CrossRefGoogle ScholarPubMed
Aam, B.B., Heggset, E.B., Norberg, A.L., Sørlie, M., Vårum, K.M., and Eijsink, V.G.H.: Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs 8, 14821517 (2010).CrossRefGoogle ScholarPubMed
Kim, S. and Rajapakse, N.: Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydr. Polym. 62, 357368 (2005).CrossRefGoogle Scholar
Madhuprakash, J., El Gueddari, N.E., Moerschbacher, B.M., and Podile, R.A.: Production of bioactive chitosan oligosaccharides using the hypertransglycosy-lating chitinase-D from serratia proteamaculans. Bioresour. Technol. 198, 503509 (2015).CrossRefGoogle ScholarPubMed
Naqvi, S., Cord-landwehr, S., Singh, R., Bernard, F., Kolkenbrock, S., El Gueddari, N.E., and Moerschbacher, B.M.: A recombinant fungal chitin deacetylase produces fully defined chitosan oligomers with novel patterns of acetylation. Appl. Environ. Microbiol. 82, 66456655 (2016).CrossRefGoogle ScholarPubMed
Kidibule, P.E., Moriano, P.S., Ortega, E.J., Escudero, M.R., Limón, M.C., Remacha, M., Plou, F.J., Aparicio, J.S., and Lobato, M.F.: Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: Enzymatic activity and structural basis of protein specificity. Microb. Cell Fact. 17, 113 (2018).CrossRefGoogle ScholarPubMed
Pechsrichuang, P., Lorentzen, S.B., Aam, B.B., Tuveng, T.R., Hamre, A.G., Eijsink, V.G.H., and Yamabhai, M.: Bioconversion of chitosan into chito-oligosaccharides (CHOS) using family 46 chitosanase from Bacillus subtilis (BsCsn46A). Carbohydr. Polym. 186, 420428 (2018).CrossRefGoogle Scholar
Vishu Kumar, A.B., Varadaraj, M.C., Lalitha, R.G., and Tharanathan, R.N.: Low molecular weight chitosans: Preparation with the aid of papain and characterization. Biochim. Biophys. Acta, Gen. Subj. 1670, 137146 (2004).CrossRefGoogle ScholarPubMed
Fernandes, J.C., Tavaria, F.K., Soares, J.C., Ramos, Ó.S., João Monteiro, M., Pintado, M.E., and Malcata, F.X.: Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol. 25, 922928 (2008).CrossRefGoogle ScholarPubMed
Mateos-Aparicio, I., Mengíbar, M., and Heras, A.: Effect of chito-oligosaccharides over human faecal microbiota during fermentation in batch cultures. Carbohydr. Polym. 137, 617624 (2016).CrossRefGoogle ScholarPubMed
Mei, Y-x., Dai, X-y., Yang, W., Xu, X-w., and Liang, Y-x.: Antifungal activity of chitooligosaccharides against the dermatophyte trichophyton rubrum. Int. J. Biol. Macromol. 77, 330335 (2015).CrossRefGoogle ScholarPubMed
Kim, T-H., Jo, Y-J., Ha, Y-M., Shon, Y-H., Bae, B-J., and Nam, K-S.: Effect of chitosan oligosaccharide on enzymes for cancer chemoprevention. J. Korean Cancer Assoc. 33, 6470 (2001).Google Scholar
Jeon, Y.J. and Kim, S.K.: Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrance reactor system. J. Microbiol. Biotechnol. 12, 503507 (2002).Google Scholar
Azuma, K., Osaki, T., Minami, S., and Okamoto, Y.: Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater. 6, 3349 (2015).CrossRefGoogle ScholarPubMed
Mattaveewong, T., Wongkrasant, P., Chanchai, S., Pichyangkura, R., Chatsudthipong, V., and Muanprasat, C.: Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling. Carbohydr. Polym. 145, 3036 (2016).CrossRefGoogle Scholar
Kunanusornchai, W., Witoonpanich, B., Pichyangkura, R., Chatsudthipong, V., and Muanprasat, C.: Chitosan oligosaccharide suppresses synovial inflammation via AMPK activation: An in vitro and in vivo study. Pharmacol. Res. 113, 458467 (2016).CrossRefGoogle Scholar
Yoon, H.J., Moon, M.E., Park, H.S., Kim, H.W., Im, S.Y., Lee, J.H., and Kim, Y.H.: Effects of chitosan oligosaccharide (COS) on the glycerol-induced acute renal failure in vitro and in vivo. Food Chem. Toxicol. 46, 710716 (2008).CrossRefGoogle ScholarPubMed
Park, P.J., Je, J.Y., and Kim, S.K.: Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. J. Agric. Food Chem. 51, 46244627 (2003).CrossRefGoogle ScholarPubMed
Xie, C., Wu, X., Long, C., Wang, Q., Fan, Z., Li, S., and Yin, Y.: Chitosan oligosaccharide affects antioxidant defense capacity and placental amino acids transport of sows. BMC Vet. Res. 12, 18 (2016).CrossRefGoogle ScholarPubMed
Wan, J., Jiang, F., Xu, Q., Chen, D., Yu, B., Huang, Z., Mao, X., Yu, J., and He, J.: New insights into the role of chitosan oligosaccharide in enhancing growth performance, antioxidant capacity, immunity, and intestinal development of weaned pigs. RSC Adv. 7, 96699679 (2017).CrossRefGoogle Scholar
Jiang, T., Xing, X., Zhang, L., Liu, Z., Zhao, J., and Liu, X.: Chitosan oligosaccharides show protective effects in coronary heart disease by improving antioxidant capacity via the increase in intestinal probiotics. Oxid. Med. Cell. Longevity 2019, 111 (2019).Google ScholarPubMed
Jiang, Y., Fu, C., Liu, G., Guo, J., and Su, Z.: Cholesterol-lowering effects and potential mechanisms of chitooligosaccharide capsules in hyperlipidemic rats. Food Nutr. Res. 62 (2018).CrossRefGoogle ScholarPubMed
Zheng, J., Yuan, X., Cheng, G., Jiao, S., Feng, C., Zhao, X., Yin, H., Du, Y., and Liu, H.: Chitosan oligosaccharides improve the disturbance in glucose metabolism and reverse the dysbiosis of gut microbiota in diabetic mice. Carbohydr. Polym. 190, 7786 (2018).CrossRefGoogle ScholarPubMed
Jeong, S., Min Cho, J., Kwon, Y.I., Kim, S.C., Yeob Shin, D., and Ho Lee, J.: Chitosan oligosaccharide (GO2KA1) improves postprandial glycemic response in subjects with impaired glucose tolerance and impaired fasting glucose and in healthy subjects: A crossover, randomized controlled trial. Nutr. Diabetes 9, 31 (2019).CrossRefGoogle ScholarPubMed
Zhu, D., Yan, Q., Liu, J., Wu, X., and Jiang, Z.: Can functional oligosaccharides reduce the risk of diabetes mellitus? FASEB J. 33, 1165511667 (2019).CrossRefGoogle ScholarPubMed
Chae, S.Y., Jang, M.K., and Nah, J.W.: Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release 102, 383394 (2005).CrossRefGoogle ScholarPubMed
MacLaughlin, F.C., Mumper, R.J., Wang, J., Tagliaferri, J.M., Gill, I., Hinchcliffe, M., and Rolland, A.P.: Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J. Control. Release 56, 259272 (1998).CrossRefGoogle ScholarPubMed
Hu, F.Q., Wu, X.L., Du, Y.Z., You, J., and Yuan, H.: Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin. Eur. J. Pharm. Biopharm. 69, 117125 (2008).CrossRefGoogle ScholarPubMed
Du, Y.Z., Wang, L., Yuan, H., Wei, X.H., and Hu, F.Q.: Preparation and characteristics of linoleic acid-grafted chitosan oligosaccharide micelles as a carrier for doxorubicin. Colloids Surf., B 69, 257263 (2009).CrossRefGoogle ScholarPubMed
Du, Y.Z., Wang, L., Yuan, H., and Hu, F.Q.: Linoleic acid-grafted chitosan oligosaccharide micelles for intracellular drug delivery and reverse drug resistance of tumor cells. Int. J. Biol. Macromol. 48, 215222 (2011).CrossRefGoogle ScholarPubMed
Du, Y.Z., Lu, P., Zhou, J.P., Yuan, H., and Hu, F.Q.: Stearic acid grafted chitosan oligosaccharide micelle as a promising vector for gene delivery system: Factors affecting the complexation. Int. J. Pharm. 391, 260266 (2010).CrossRefGoogle ScholarPubMed
Li, Q., Du, Y.Z., Yuan, H., Zhang, X.G., Miao, J., Cui, F.D., and Hu, F.Q.: Synthesis of Lamivudine stearate and antiviral activity of stearic acid-g-chitosan oligosaccharide polymeric micelles delivery system. Eur. J. Pharm. Sci. 41, 498507 (2010).CrossRefGoogle ScholarPubMed
Termsarasab, U., Cho, H.J., Kim, D.H., Chong, S., Chung, S.J., Shim, C.K., Moon, H.T., and Kim, D.D.: Chitosan oligosaccharide–arachidic acid-based nanoparticles for anti-cancer drug delivery. Int. J. Pharm. 441, 373380 (2012).CrossRefGoogle ScholarPubMed
Zhang, H., Huang, X., Sun, Y., Xing, J., Yamamoto, A., and Gao, Y.: Absorption-improving effects of chitosan oligomers based on their mucoadhesive properties: A comparative study on the oral and pulmonary delivery of calcitonin. Drug Deliv. 23, 24192427 (2016).CrossRefGoogle ScholarPubMed
Dyawanapelly, S., Koli, U., Dharamdasani, V., Jain, R., and Dandekar, P.: Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins. Drug Deliv. Transl. Res. 6, 365379 (2016).CrossRefGoogle ScholarPubMed
Moorthy, M.S., Hoang, G., Manivasagan, P., Mondal, S., Vy Phan, T.T., Kim, H., and Oh, J.: Chitosan oligosaccharide coated mesoporous silica nanoparticles for pH-stimuli responsive drug delivery applications. J. Porous Mater. 26, 217226 (2019).CrossRefGoogle Scholar
Taniuchi, K., Yawata, T., Tsuboi, M., and Ueba, T.: Efficient delivery of small interfering RNAs targeting particular mRNAs into pancreatic cancer cells inhibits invasiveness and metastasis of pancreatic tumors. Oncotarget 10, 28692886 (2019).CrossRefGoogle ScholarPubMed
Lieder, R., Reynisdóttir, S.T., Thormódsson, F., Ng, C-H., Einarsson, J.M., Gíslason, J., Bjornsson, J., Gudmundsson, S., Petersen, P.H., and Sigurjonsson, O.E.: Glucosamine increases the expression of YKL-40 and osteogenic marker genes in hMSC during osteogenic differentiation. Nat. Prod. Bioprospect. 2, 8791 (2012).CrossRefGoogle Scholar
Lieder, R., Thormodsson, F., Ng, C.H., Einarsson, J.M., Gislason, J., Petersen, P.H., and Sigurjonsson, O.E.: Chitosan and Chitin Hexamers affect expansion and differentiation of mesenchymal stem cells differently. Int. J. Biol. Macromol. 51, 675680 (2012).CrossRefGoogle ScholarPubMed
Wei, C-K. and Ding, S-J.: Dual functional bone implants with antibacterial ability and osteogenic activity. J. Mater. Chem. B 5, 19431953 (2017).CrossRefGoogle ScholarPubMed
Kumar, A. and Kumar, A.: Fabrication of eggshell membrane–based novel buccal mucosa–mimetic surface and mucoadhesion testing of chitosan oligosaccharide films. J. Mater. Res. 34, 37773786 (2019).CrossRefGoogle Scholar