Skip to main content Accessibility help

Variation of crystal quality and residual stresses in epitaxially grown thin film systems induced by ion implantation and annealing

  • Mei Liu (a1), Haihui Ruan (a1) and Liangchi Zhang (a1)


In the semiconductor industry, ion implantation and the subsequent annealing have ubiquitously been used to mitigate residual stresses and crystallographic defects in a film-on-substrate system. However, the relationship between crystal quality and residual stresses induced by lattice mismatch and disparate thermal expansions has not yet been understood. This paper aims to clarify the mist through an in-depth investigation into the stress and microstructure variations in the ion implantation and annealing processes. It was found that a higher-energy implantation with a higher ion dose density leads to a more significant relief of residual stresses. However, a higher annealing temperature, which results in fewer defects, will bring about greater residual stress regeneration. To achieve a higher crystal quality but lower stresses, it is necessary to enable the ions to penetrate through the film to cause substrate expansion, such that the mismatch between the film and substrate is mitigated and the high temperature annealing can be utilized to minimize the interface defects.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Freund, L.B. and Suresh, S.: Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, UK, 2004).
2.Roder, C., Einfeldt, S., Figge, S., Paskova, T., Hommel, D., Paskov, P.P., Monemar, B., Behn, U., Haskell, B.A., Fini, P.T., and Nakamura, S.: Stress and wafer bending of a-plane GaN layers on r-plane sapphire substrates. J. Appl. Phys. 100(10), 103511 (2006).
3.Anzalonea, R., Camarda, M., Locke, C., Carballo, J., Piluso, N., La Magna, A., Volinsky, A.A., Saddowb, S.E., and La Viab, F.: Stress nature investigation on heteroepitaxial 3C–SiC film on (100) Si substrates. J. Mater. Res. 1(1), 1 (2012).
4.Maurice, J.L., Durand, O., Drouet, M., and Contour, J.P.: Microstructure and strain relaxation in YBa2Cu3O7 epitaxial thin films. Thin Solid Films 319(1), 211 (1998).
5.Lei, C., Jia, C., Siegert, M., and Urban, K.: Investigation of {111} stacking faults and nanotwins in epitaxial BaTiO3 thin films by high-resolution transmission electron microscopy. Philos. Mag. Lett. 80(6), 371 (2000).
6.Liu, L.L., Zhang, Y.S., and Zhang, T.Y.: Strain relaxation in heteroepitaxial films by misfit twinning. I. Critical thickness. J. Appl. Phys. 101(6), 063501 (2007).
7.Maree, P.M.J., Barbour, J.C., Vanderveen, J.F., Kavanagh, K.L., Bullelieuwma, C.W.T., and Viegers, M.P.A.: Generation of misfit dislocations in semiconductors. J. Appl. Phys. 62(11), 4413 (1987).
8.Freund, L.B.: Dislocation mechanisms of relaxation in strained epitaxial-films. MRS Bull. 17(7), 52 (1992).
9.Freund, L.B.: The driving force for glide of a threading dislocation in a strained epitaxial layer on a substrate. J. Mech. Phys. Solids 38(5), 657 (1990).
10.Ning, X., Chien, F., Pirouz, P., Yang, J., and Khan, M.A.: Growth defects in GaN films on sapphire: The probable origin of threading dislocations. J. Mater. Res. 11(3), 580 (1996).
11.Iborra, E., Olivares, J., Clement, M., Vergara, L., Sanz-Hervás, A., and Sangrador, J.: Piezoelectric properties and residual stress of sputtered AlN thin films for MEMS applications. Sens. Actuators, A 115(2), 501 (2004).
12.Onga, S., Yoshii, T., Hatanaka, K., and Yasuda, Y.: Effects of crystalline defects on electrical-properties in silicon films on sapphire. Jpn. J. Appl. Phys. 15, 225 (1976).
13.Smith, C.S.: Piezoresistance effect in Germanium and silicon. Phys. Rev. 94(1), 42 (1954).
14.Lau, S.S., Matteson, S., Mayer, J.W., Revesz, P., Gyulai, J., Roth, J., Sigmon, T.W., and Cass, T.: Improvement of crystalline quality of epitaxial Si layers by ion-implantation techniques. Appl. Phys. Lett. 34(1), 76 (1979).
15.Paine, D.C., Howard, D.J., Stoffel, N.G., and Horton, J.A.: The growth of strained Si1-XGex alloys on (001) silicon using solid-phase epitaxy. J. Mater. Res. 5(5), 1023 (1990).
16.Liu, M., Zhang, L.C., Brawley, A., Atanackovic, P., and Duvall, S.: Determining the complete residual stress tensors in SOS hetero-epitaxial thin film systems by the technique of x-ray diffraction. Key Eng. Mater. 443, 742 (2010).
17.Narayan, J. and Larson, B.C.: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93(1), 278 (2003).
18.Bayati, M.R., Molaei, R., Narayan, R.J., Narayan, J., Zhou, H., and Pennycook, S.J.: Domain epitaxy in TiO2/alpha-Al2O3 thin film heterostructures with Ti2O3 transient layer. Appl. Phys. Lett. 100(25), 251606 (2012).
19.Abrahams, M.S., Buiocchi, C.J., Corboy, J.F., and Cullen, G.W.: Misfit dislocations in heteroepitaxial Si on sapphire. Appl. Phys. Lett. 28(5), 275 (1976).
20.Liu, M., Ruan, H.H., Zhang, L.C., and Moridi, A.: Effects of misfit dislocation and film-thickness on the residual stresses in epitaxial thin film systems: Experimental analysis and modelling. J. Mater. Res. 27(21), 2737 (2012).
21.Cristoloveanu, S.: Silicon films on sapphire. Rep. Prog. Phys. 50(3), 327 (1987).
22.Anidow, M.: Studies of Heteroepitaxial Films of Silicon and Cadmium Telluride on Sapphire (Liverpool University, Liverpool, UK, 1989).
23.Hamarthibault, S. and Trilhe, J.: Transmission electron observations of the early stage of epitaxial-growth of silicon on sapphire. J. Electrochem. Soc. 128(3), 581 (1981).
24.McKenzie, W.R., Domyo, H., Ho, T., and Munroe, P.R.: Re-crystallisation of amorphous silicon in the production of low defect density silicon on sapphire thin films. Microsc. Microanal. 11(Suppl 2), 2 (2005).
25.Aindow, M., Batstone, J.L., Pfeiffer, L., Phillips, J.M., and Pond, R.C.: The effect of rapid thermal annealing on the dislocation-structure of silicon on sapphire. MRS Proc. 138, 373 (1989).
26.Amano, J. and Carey, K.W.: Low-defect-density silicon on sapphire. J. Cryst. Growth 56(2), 296 (1982).
27.Ohmura, Y., Inoue, T., and Yoshi, T.: A Raman-study of Si-implanted silicon on sapphire. J Appl Phys. 54(11), 6779 (1983).
28.Bolotov, V.V., Efremov, M.D., Karavaev, V.V., Volodin, V.A., and Golomedov, A.V.: Study of stress-relaxation in implanted silicon on sapphire structures using Raman-spectroscopy. Thin Solid Films 208(2), 217 (1992).
29.Dubbelday, W.B. and Kavanagh, K.L.: Oscillatory strain relaxation in solid phase epitaxially regrown silicon on sapphire, in First International Workshop on Lattice-Mismatched and Heterovalent Thin Film Epitaxy, edited by Fitzgerald, E.A.. United Engineering Foundation (U.S.) (TMS, the University of Michigan, U.S. 1999), pp. 13.
30.Misra, D. and Swain, P.: Strain relaxation in SiGe due to process induced defects and their subsequent annealing behavior. Microelectron. Reliab. 38(10), 1611 (1998).
31.Mantl, S., Holländer, B., Liedtke, R., Mesters, S., Herzog, H., Kibbel, H., and Hackbarth, T.: Strain relaxation of epitaxial SiGe layers on Si (100) improved by hydrogen implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 147(1), 29 (1999).
32.Trinkaus, H., Holländer, B., Mantl, S., Herzog, H.J., Kuchenbecker, J., and Hackbarth, T.: Strain relaxation mechanism for hydrogen-implanted SiGe/Si (100) heterostructures. Appl. Phys. Lett. 76, 3552 (2000).
33.DeWolf, I.: Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond. Sci. Technol. 11(2), 139 (1996).
34.Englert, T., Abstreiter, G., and Pontcharra, J.: Determination of existing stress in silicon films on sapphire substrate using Raman-spectroscopy. Solid State Electron. 23(1), 31 (1980).
35.Narayan, J.: Ion-implantation damage and its annealing phenomena in semiconductors. JOM 36(12), 52 (1984).
36.Gibbons, J.F.: Ion implantation in semiconductors .2. Damage production and annealing. Pr Inst. Electr. Elect. 60(9), 1062 (1972).
37.Moridi, A., Ruan, H.H., Zhang, L.C., and Liu, M.: A finite element simulation of residual stresses induced by thermal and lattice mismatch in thin films, in Proceedings of AES-ATEMA’2011 Seventh International Conference, on Advances and Trends in Engineering Materials and Their Applications, edited by Haddad, Y.M. (Advanced Engineering Solutions, Ottawa, Canada, 2011), pp. 57.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed