Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-07T01:47:43.443Z Has data issue: false hasContentIssue false

Uniform spherical colloidal palladium particles by reduction of solid complex precursors

Published online by Cambridge University Press:  03 March 2011

Stanka Kratohvil
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Box 5814, Potsdam, New York 13699-5814
Egon Matijević
Affiliation:
Center for Advanced Materials Processing, Clarkson University, Box 5814, Potsdam, New York 13699-5814
Get access

Abstract

A procedure is described that yields uniform spherical colloidal palladium particles of modal diameters ranging between 0.1 and 0.7 μm. The process consists of two stages. First a monodispersed solid composite precursor is precipitated in solutions containing PdCl2, urea, and a nonionic surfactant. The resulting particles are then reduced in aqueous media, either by hydrazine or ascorbic acid in the presence of a protective agent. No change in particle shape occurred during the transformation to pure metals.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Matijevic, E., CHEMTECH 21, 176 (1991).Google Scholar
2Hsu, W. P., Yu, R., and Matijevic, E., J. Colloid Interf. Sci. 156, 56 (1993).Google Scholar
3Giesche, H. and Matijevic, E., J. Mater. Res. 9, 436 (1994).Google Scholar
4Matijevic, E., in Controlled Particle, Droplet and Bubble Formation, edited by Wedlock, D. J. (Butterworth-Heinemann, London, 1994), pp. 3959.Google Scholar
5Matijevic, E., Langmuir 10, 8 (1994).CrossRefGoogle Scholar
6Matijevic, E., Chem. Mater. 5, 412 (1993).CrossRefGoogle Scholar
7Brintzinger, H., Kolloid-Z. 78, 22 (1937).CrossRefGoogle Scholar
8Rampino, L. D. and Nord, F. F., J. Am. Chem. Soc. 63, 2745 (1941).CrossRefGoogle Scholar
9Hirai, H., Nakao, Y., and Toshima, N., J. Macromol. Sci. A13, 727 (1979).CrossRefGoogle Scholar
10Nakao, Y. and Kaeriyama, K., J. Colloid Interf. Sci. 110, 82 (1986).Google Scholar
11Blokhin, A. I., Shivrin, G. N., Kozlova, S. A., and Blokhina, M. L., Russ. J. Inorg. Chem. 34, 455 (1989).Google Scholar
12Mucalo, M. R., Cooney, R. P., and Metson, J. B., Colloids Surf. 60, 175 (1991).CrossRefGoogle Scholar
13Ishizuki, N., Torigoe, K., Esumi, K., and Meguro, K., Colloids Surf. 55, 15 (1991).CrossRefGoogle Scholar
14Matijevic, E., Discuss. Faraday Soc. 92, 229 (1992).CrossRefGoogle Scholar
15Hsu, W. P., Yu, R., and Matijevic, E., Powder Technol. 63, 265 (1990).Google Scholar
16Hamada, S., Eto, M., and Kudo, Y., J. Chem. Soc. Jpn., Chem. and Ind. Chem. 6, 893 (1984).Google Scholar
17Ishikawa, T. and Matijevic, E., Langmuir 4, 26 (1988).Google Scholar
18Porta, F., Hsu, W. P., and Matijevic, E., Colloids Surf. 46, 63 (1990).CrossRefGoogle Scholar
19Drechsel, E., J. fur praktische Chemie, Neue Folge (Leipzig) 20, 469 (1879).CrossRefGoogle Scholar
20Penland, R. B., Mizushima, S., Curran, C., and Quagliano, J. V., J. Am. Chem. Soc. 79, 1575 (1957).CrossRefGoogle Scholar
21Powder Diffraction File, Inorganic Phases, No. 5–681 (JCPDS International Center for Diffraction Data, Swarthmore, PA, 1981).Google Scholar