Skip to main content Accessibility help

Ultrafine bamboo-char as a new reinforcement in poly(lactic acid)/bamboo particle biocomposites: The effects on mechanical, thermal, and morphological properties

  • Shaoping Qian (a1), Yingying Tao (a2), Yiping Ruan (a2), Cesar A. Fontanillo Lopez (a2) and Linqiong Xu (a2)...


In this study, varying contents of ultrafine bamboo-char (UFBC) were introduced into PLA/bamboo particle (BP) biocomposites as new reinforcements to improve the mechanical, thermal, and morphological properties of the biocomposites. The new strategy was aiming to realize the synergistic effects of reinforcement and toughening of poly(lactic acid) (PLA) composites through a simple method without surface modification and other additives. The maximum tensile strength, modulus, and elongation at break of 45.20 MPa, 540.50 MPa, and 7.53% were reached at 5.0 wt% UFBC content, which were slightly lower than those of pure PLA. The maximum modulus of elasticity of the ternary biocomposites was 5316.1 MPa at 5.0 wt% UFBC content, which was approximately 2 times higher than the pure PLA. Impact strength reached a maximum value of 38.56 J/m when the UFBC content was 5 wt%, and improved by 376% compared with pure PLA of 7.88 J/m. Meanwhile, compared with the PLA/BP binary composite of 20.50 J/m, it improved 88%. A concrete-like microstructure system was achieved (i.e., cement, sand, and rebar corresponding to PLA, UFBC, and BP, respectively).


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Li, C., Guo, J., Jiang, T., Zhang, X., Xia, L., Wu, H., Guo, S., and Zhang, X.: Extensional flow-induced hybrid crystalline fibrils (shish) in CNT/PLA nanocomposite. Carbon 129, 720 (2018).
2.Sookprasert, P. and Hinchiranan, N.: Morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/natural rubber (NR) blends compatibilized by NR-graft-PLA. J. Mater. Res. 32, 788 (2017).
3.Yao, Q., Cosme, J.G.L., Xu, T., Miszuk, J.M., Picciani, P.H.S., Fong, H., and Sun, H.: Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 115, 115 (2017).
4.Hu, C., Li, Z., Wang, Y., Gao, J., Dai, K., Zheng, G., Liu, C., Shen, C., Song, H., and Guo, Z.: Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: Reduced graphene oxide or carbon nanotubes. J. Mater. Chem. C 5, 2318 (2017).
5.Murariu, M. and Dubois, P.: PLA composites: From production to properties. Adv. Drug Deliver. Rev. 107, 17 (2016).
6.Tsuji, H.: Poly(lactic acid) stereocomplexes: A decade of progress. Adv. Drug Deliver. Rev. 107, 97 (2016).
7.Tyler, B., Gullotti, D., Mangraviti, A., Utsuki, T., and Brem, H.: Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliver. Rev. 107, 163 (2016).
8.Nagarajan, V., Mohanty, A.K., and Misratt, M.: Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chem. Eng. 4, 2899 (2016).
9.Li, C., Wang, F., Chen, P., Zhang, Z., Guidoin, R., and Wang, L.: Preventing collapsing of vascular scaffolds: The mechanical behavior of PLA/PCL composite structure prostheses during in vitro degradation. J. Mech. Behav. Biomed. Mater. 75, 455 (2017).
10.Kelnar, I., Kratochvil, J., Kapralkova, L., Zhigunov, A., and Nevoralova, M.: Graphite nanoplatelets-modified PLA/PCL: Effect of blend ratio and nanofiller localization on structure and properties. J. Mech. Behav. Biomed. Mater. 71, 271 (2017).
11.Geng, L.H., Peng, X.F., Jing, X., Li, L.W., Huang, A., Xu, B.P., Chen, B.Y., and Mi, H.Y.: Investigation of poly(L-lactic acid)/graphene oxide composites crystallization and nanopore foaming behaviors via supercritical carbon dioxide low temperature foaming. J. Mater. Res. 31, 348 (2016).
12.Erpek, C.E.Y., Ozkoc, G., and Yilmazer, U.: Effects of halloysite nanotubes on the performance of plasticized poly(lactic acid)-based composites. Polym. Compos. 37, 3134 (2016).
13.Erpek, C.E.Y., Ozkoc, G., and Yilmazer, U.: Comparison of natural halloysite with synthetic carbon nanotubes in poly(lactic acid) based composites. Polym. Compos. 38, 2337 (2017).
14.Li, Z., Tan, B.H., Lin, T., and He, C.: Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 62, 22 (2016).
15.Liang, J-Z. and Li, F-J.: Mechanical properties of poly(l-lactic acid) composites filled with mesoporous silica. Polym. Compos. 38, 1118 (2017).
16.Zhou, Y., Lei, L., Yang, B., Li, J., and Ren, J.: Preparation of PLA-based nanocomposites modified by nano-attapulgite with good toughness-strength balance. Polym. Test. 60, 78 (2017).
17.Iwatake, A., Nogi, M., and Yano, H.: Cellulose nanofiber-reinforced polylactic acid. Compos. Sci. Technol. 68, 2103 (2008).
18.Rhim, J-W., Park, H-M., and Ha, C-S.: Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629 (2013).
19.Qian, S. and Sheng, K.: PLA toughened by bamboo cellulose nanowhiskers: Role of silane compatibilization on the PLA bionanocomposite properties. Compos. Sci. Technol. 148, 59 (2017).
20.Alippilakkotte, S. and Sreejith, L.: Benign route for the modification and characterization of poly(lactic acid) (PLA) scaffolds for medicinal application. J. Appl. Polym. Sci. 135, 46056 (2018).
21.Deng, S., Ma, J., Guo, Y., Chen, F., and Fu, Q.: One-step modification and nanofibrillation of microfibrillated cellulose for simultaneously reinforcing and toughening of poly(epsilon-caprolactone). Compos. Sci. Technol. 157, 168 (2018).
22.Jin, F-L., Zhang, H., Yao, S-S., and Park, S-J.: Effect of surface modification on impact strength and flexural strength of poly(lactic acid)/silicon carbide nanocomposites. Macromol. Res. 26, 211 (2018).
23.Jing, M., Che, J., Xu, S., Liu, Z., and Fu, Q.: The effect of surface modification of glass fiber on the performance of poly(lactic acid) composites: Graphene oxide versus silane coupling agents. Appl. Surf. Sci. 435, 1046 (2018).
24.Qian, S., Mao, H., Sheng, K., Lu, J., Luo, Y., and Hou, C.: Effect of low-concentration alkali solution pretreatment on the properties of bamboo particles reinforced poly(lactic acid) composites. J. Appl. Polym. Sci. 130, 1667 (2013).
25.Qian, S., Mao, H., Zarei, E., and Sheng, K.: Preparation and characterization of maleic anhydride compatibilized poly(lactic acid)/bamboo particles biocomposites. J. Polym. Environ. 23, 341 (2015).
26.Qian, S., Wang, H., Zarei, E., and Sheng, K.: Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites. Composites, Part B 82, 23 (2015).
27.Liu, W., Xie, T., Qiu, R., and Fan, M.: N-methylol acrylamide grafting bamboo fibers and their composites. Compos. Sci. Technol. 117, 100 (2015).
28.Zhang, S., Yao, W., Zhang, H., and Sheng, K.: Polypropylene biocomposites reinforced with bamboo particles and ultrafine bamboo-char: The effect of blending ratio. Polym. Compos. 39, E640 (2018).
29.Qian, S., Sheng, K., Yao, W., and Yu, H.: Poly(lactic acid) biocomposites reinforced with ultrafine bamboo-char: Morphology, mechanical, thermal, and water absorption properties. J. Appl. Polym. Sci. 133, 43425 (2016).
30.Oral, I.: Determination of elastic constants of epoxy resin/biochar composites by ultrasonic pulse echo overlap method. Polym. Compos. 37, 2907 (2016).
31.You, Z. and Li, D.: The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites. Mater. Lett. 112, 197 (2013).
32.You, Z. and Li, D.: Highly filled bamboo charcoal powder reinforced ultra-high molecular weight polyethylene. Mater. Lett. 122, 121 (2014).
33.Li, S., Li, X., Chen, C., Wang, H., Deng, Q., Gong, M., and Li, D.: Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network. Compos. Sci. Technol. 132, 31 (2016).
34.Ho, M-p., Lau, K-t., Wang, H., and Hui, D.: Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Composites, Part B 81, 14 (2015).
35.Das, O., Sarmah, A.K., and Bhattacharyya, D.: Nanoindentation assisted analysis of biochar added biocomposites. Composites, Part B 91, 219 (2016).
36.Li, Y., Chen, C., Li, J., and Sun, X.S.: Photoactivity of Poly(lactic acid) nanocomposites modulated by TiO2 nanofillers. J. Appl. Polym. Sci. 131, 40241 (2014).
37.Fu, S-Y., Feng, X-Q., Lauke, B., and Mai, Y-W.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites, Part B 39, 933 (2008).
38.Su, Z., Huang, K., and Lin, M.: Thermal and mechanical properties of poly(lactic acid)/modified carbon black composite. J. Macromol. Sci., Part B: Phys. 51, 1475 (2012).
39.Teymoorzadeh, H. and Rodrigue, D.: Morphological, mechanical, and thermal properties of injection molded polylactic acid foams/composites based on wood flour. J. Cell. Plast. 54, 179 (2018).
40.Lanjewar, S.R., Bari, P.S., Hansora, D.P., and Mishra, S.: Preparation and analysis of polypropylene composites with maleated tea dust particles. Sci. Eng. Compos. Mater. 25, 373 (2018).


Related content

Powered by UNSILO

Ultrafine bamboo-char as a new reinforcement in poly(lactic acid)/bamboo particle biocomposites: The effects on mechanical, thermal, and morphological properties

  • Shaoping Qian (a1), Yingying Tao (a2), Yiping Ruan (a2), Cesar A. Fontanillo Lopez (a2) and Linqiong Xu (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.