Skip to main content Accessibility help

Ultrafiltration performance and fouling resistance of PVB/SPES blend membranes with different degree of sulfonation

  • Shuhong Jiang (a1), Jun Wang (a1), Jun Wu (a1), Hongzhong Zhou (a1) and Chuanwei Jiang (a1)...


In the present study, we investigated the effects of different degree of sulfonation (DS) on the performance of the poly (vinyl butyral)/sulfonated polyethersulfone (PVB/SPES) blend membranes. The compatibility of the PVB/SPES blending system was characterized by shear viscosity and Fourier transform infrared attenuated total reflection, respectively. Results stated that all PVB/SPES blending systems were partially compatible. Contact angle, equilibrium water content, and x-ray photoelectron spectroscopy measurements were carried out to investigate the hydrophilicity of the PVB/SPES blend membranes. With increasing DS, the blend membranes became more hydrophilic. The pure water flux of the blend membranes increased with DS, while the rejection decreased due to microstructures of the PVB/SPES membranes. The mechanical properties of the PVB/SPES blend membranes increased slightly with DS. Fouling resistances of blend membranes evaluated by bovine serum albumin solution filtration revealed the PVB/SPES blend membranes with DS = 27% exhibited the superior antifouling properties.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Le-Clech, P., Chen, V., and Fane, T.A.G.: Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 284, 17 (2006).
2. Lewis, R., Nothrop, S., Chow, C.W.K., Everson, A., and van Leeuwen, J.A.: Colour formation from pre and post-coagulation treatment of Pinus radiata sulfite pulp mill wastewater using nutrient limited aerated stabilisation basins. Sep. Purif. Technol. 114, 1 (2013).
3. Taniguchi, M. and Belfort, G.: Low protein fouling synthetic membranes by UV-assisted surface grafting modification: Varying monomer type. J. Membr. Sci. 231, 147 (2004).
4. Aydiner, C.: A novel approach based on distinction of actual and pseudo resistances in membrane fouling: “Pseudo resistance” concept and its implementation in nanofiltration of single solutions. J. Membr. Sci. 361, 96 (2010).
5. Van der Bruggen, B., Mänttäri, M., and Nyström, M.: Drawbacks of applying nanofiltration and how to avoid them: A review. Sep. Purif. Technol. 63, 251 (2008).
6. Qiu, Y., Qi, J., and Wei, Y.: Synergistic action of non-solvent induced phase separation in preparation of poly (vinyl butyral) hollow fiber membrane via thermally induced phase separation. J. Cent. South. Univ. 21, 2184 (2014).
7. Lonsdale, H.K.: The growth of membrane technology. J. Membr. Sci. 10, 81 (1982).
8. Tutunjian, R.S.: Ultrafiltration processes in biotechnology. Ann. N. Y. Acad. Sci. 413, 238 (1983).
9. Qiu, Y., Hideto, M., Zhong, H., Ye, H., and Huang, K.: Effects of F127 on properties of PVB/F127 blend hollow fiber membrane via thermally induced phase separation. Chin. J. Chem. Eng. 18, 207 (2010).
10. Qiu, Y.R. and Matsuyama, H.: Preparation and characterization of poly (vinyl butyral) hollow fiber membrane via thermally induced phase separation with diluent polyethylene glycol 200. Desalination 257, 117 (2010).
11. Dhaliwal, A.K. and Hay, J.N.: The characterization of polyvinyl butyral by thermal analysis. Thermochim. Acta. 391, 245 (2002).
12. Fu, X., Matsuyama, H., Teramoto, M., and Nagai, H.: Preparation of polymer blend hollow fiber membrane via thermally induced phase separation. Sep. Purif. Technol. 52, 363 (2006).
13. Yan, L. and Wang, J.: Development of a new polymer membrane—PVB/PVDF blended membrane. Desalination 281, 455 (2011).
14. Kim, J.H. and Kim, C.K.: Ultrafiltration membranes prepared from blends of polyethersulfone and poly (1-vinylpyrrolidone-co-styrene) copolymers. J. Membr. Sci. 262, 60 (2005).
15. Ulbricht, M., Schuster, O., Ansorge, W., Ruetering, M., and Steiger, P.: Influence of the strongly anisotropic cross-section morphology of a novel polyethersulfone microfiltration membrane on filtration performance. Sep. Purif. Technol. 57, 63 (2007).
16. Ma, X., Su, Y., Sun, Q., Wang, Y., and Jiang, Z.: Enhancing the antifouling property of polyethersulfone ultrafiltration membranes through surface adsorption-crosslinking of poly (vinyl alcohol). J. Membr. Sci. 300, 71 (2007).
17. Moghimifar, V., Raisi, A., and Aroujalian, A.: Surface modification of polyethersulfone ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles. J. Membr. Sci. 461, 69 (2014).
18. Peng, J., Su, Y., Shi, Q., Chen, W., and Jiang, Z.: Protein fouling resistant membrane prepared by amphiphilic pegylated polyethersulfone. Bioresour. Technol. 102, 2289 (2011).
19. Yune, P.S., Kilduff, J.E., and Belfort, G.: Using co-solvents and high throughput to maximize protein resistance for poly (ethylene glycol)-grafted poly (ether sulfone) UF membranes. J. Membr. Sci. 370, 166 (2011).
20. Mahendran, R., Malaisamy, R., and Mohan, D.R.: Cellulose acetate and polyethersulfone blend ultrafiltration membranes. Part I: Preparation and characterizations. Polym. Advan. Technol. 15, 149 (2004).
21. Wang, Y., Wang, T., Su, Y., Peng, F., Wu, H., and Jiang, Z.: Protein-adsorption-resistance and permeation property of polyethersulfone and soybean phosphatidylcholine blend ultrafiltration membranes. J. Membr. Sci. 270, 108 (2006).
22. Rahimpour, A. and Madaeni, S.S.: Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties. J. Membr. Sci. 305, 299 (2007).
23. Gao, Y., Robertson, G.P., Guiver, M.D., Jian, X., Mikhailenko, S.D., Wang, K., and Kaliaguine, S.: Sulfonation of poly (phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials. J. Membr. Sci. 227, 39 (2003).
24. Klaysom, C., Ladewig, B.P., Lu, G.Q., and Wang, L.: Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes. J. Membr. Sci. 368, 48 (2011).
25. Kang, M.S., Choi, Y.J., Choi, I.J., Yoon, T.H., and Moon, S.H.: Electrochemical characterization of sulfonated poly (arylene ether sulfone) (S-PES) cation-exchange membranes. J. Membr. Sci. 216, 39 (2003).
26. Guan, R., Zou, H., Lu, D., Gong, C., and Liu, Y.: Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. Eur. Polym. J. 41, 1554 (2005).
27. Zhao, W., Mou, Q., Zhang, X., Shi, J., Sun, S., and Zhao, C.: Preparation and characterization of sulfonated polyethersulfone membranes by a facile approach. Eur. Polym. J. 49, 738 (2013).
28. Gao, Y., Robertson, G.P., Guiver, M.D., and Jian, X.: Synthesis and characterization of sulfonated poly (phthalazinone ether ketone) for proton exchange membrane materials. J. Polym. Sci. Pol. Chem. 41, 497 (2003).
29. Nolte, R., Ledjeff, K., Bauer, M., and Mülhaupt, R.: Partially sulfonated poly (arylene ether sulfone)-A versatile proton conducting membrane material for modern energy conversion technologies. J. Membr. Sci. 83, 211 (1993).
30. Daraei, P., Madaeni, S.S., Ghaemi, N., Khadivi, M.A., Astinchap, B., and Moradian, R.: Fouling resistant mixed matrix polyethersulfone membranes blended with magnetic nanoparticles: Study of magnetic field induced casting. Sep. Purif. Technol. 109, 111 (2013).
31. Arthanareeswaran, G., Sriyamuna Devi, T.K., and Raajenthiren, M.: Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I. Sep. Purif. Technol. 64, 38 (2008).
32. Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S., and Astinchap, B.: Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep. Purif. Technol. 90, 69 (2012).
33. Pieracci, J., Crivello, J.V., and Belfort, G.: Increasing membrane permeability of UV-modified poly (ether sulfone) ultrafiltration membranes. J. Membr. Sci. 202, 1 (2002).
34. Lawrence, J. and Yamaguchi, T.: The degradation mechanism of sulfonated poly (arylene ether sulfone)s in an oxidative environment. J. Membr. Sci. 325, 633 (2008).
35. Kuleznev, V.N., Melnikova, O.L., and Klykova, V.D.: Dependence of modulus and viscosity upon composition for mixtures of polymers. Effects of phase composition and properties of phases. Eur. Polym. J. 14, 455 (1978).
36. Singh, Y.P. and Singh, R.P.: Compatibility studies on solutions of polymer blends by viscometric and ultrasonic techniques. Eur. Polym. J. 19, 535 (1983).
37. Li, Y.: Research of Solution Blending in Modification of PVDF Membrane (Donghua University, Shanghai, China, 2012).
38. Mu, C., Su, Y., Sun, M., Chen, W., and Jiang, Z.: Remarkable improvement of the performance of poly (vinylidene fluoride) microfiltration membranes by the additive of cellulose acetate. J. Membr. Sci. 350, 293 (2010).
39. Su, Y., Li, C., Zhao, W., Shi, Q., Wang, H., Jiang, Z., and Zhu, S.: Modification of polyethersulfone ultrafiltration membranes with phosphorylcholine copolymer can remarkably improve the antifouling and permeation properties. J. Membr. Sci. 332, 171 (2008).
40. Vatanpour, V., Madaeni, S.S., Rajabi, L., Zinadini, S., and Derakhshan, A.A.: Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. J. Membr. Sci. 401, 132 (2012).
41. Ishihara, K.: Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. Sci. Technol. Adv. Mat. 1, 131 (2000).
42. Lu, J.R., Murphy, E.F., Su, T.J., Lewis, A.L., Stratford, P.W., and Satija, S.K.: Reduced protein adsorption on the surface of a chemically grafted phospholipid monolayer. Langmuir 17, 3382 (2001).
43. Kochkodan, V. and Hilal, N.A.: comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination 356, 187 (2015).
44. Al-Amoudi, A. and Lovitt, R.W.: Fouling strategies and the cleaning system of NF membranes and factors affecting cleaning efficiency. J. Membr. Sci. 303, 4 (2007).


Ultrafiltration performance and fouling resistance of PVB/SPES blend membranes with different degree of sulfonation

  • Shuhong Jiang (a1), Jun Wang (a1), Jun Wu (a1), Hongzhong Zhou (a1) and Chuanwei Jiang (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed