Skip to main content Accessibility help

Transmission electron microscopy study of epitaxial InN thin films grown on c-plane sapphire

  • C.J. Lu (a1), X.F. Duan (a2), Hai Lu (a3) and William J. Schaff (a3)


High-quality epitaxial InN thin films grown on (0001) sapphire with GaN buffer were characterized using transmission electron microscopy. It was found that the GaN buffer layer exhibits the (0001) Ga polarity and the InN film has In-terminated polarity. At the InN/GaN interface, there exists a high density of misfit dislocation (MD) array. Perfect edge threading dislocations (TDs) with (1/3)〈1120〉 Burgers vectors are predominant defects that penetrate the GaN and InN layers. Pure screw and mixed TDs were also observed. Overall, the TD density decreases during film growth due to annihilation and fusion. The TD density in GaN is as high as ∼1.5 × 1011 cm−2, and it drops rapidly to ∼2.2 × 1010 cm−2 in InN films. Most half-loops in GaN are connected with MD segments at the InN/GaN interface to form loops, while some TD segments threaded the interface. Half-loops were also generated during the initial stages of InN growth.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1.Yamaguchi, S., Kariya, M., Nitta, S., Takeuchi, T., Wetzel, C., Amano, H., Akasaki, I.: Structural properties of InN on GaN grown by metal organic vapor-phase epitaxy. J. Appl. Phys. 85, 7682 (1999).
2.Lu, H., Schaff, W.J., Hwang, J., Wu, H., Koley, G., Eastman, L.F.: Effect of an AlN buffer layer on the epitaxial growth of InN by molecular epitaxy. Appl. Phys. Lett. 79, 1489 (2001).
3.Higashiwaki, M., Matsui, T.: High-quality InN film grown on a low-temperature-grown GaN intermediate layer by plasma-assisted molecular-beam epitaxy. Jpn. J. Appl. Phys. 41, L540 (2002).
4.Wu, J., Walukiewicz, W., Shan, W., Yu, K.M., III, J.W. Auger, Haller, E.E., Lu, H., Schaff, W.J.: Effects of the narrow band gap on the properties of InN. Phys. Rev. B 66, 201403 (2002).
5.Davydov, V.Yu., Klochikhin, A.A., Seisyan, R.P., Emtsev, V.V., Ivanov, S.V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, A.V., Aderhold, J., Semchinova, O., Graul, J.: Absorption and emission of hexagonal InN evidence of narrow fundamental band gap. Phys. Status Solidi (b) 229, R1 (2002).
6.Wu, J., Walukiewicz, W., Yu, K.M., III, J.W. Auger, Haller, E.E., Lu, H., Schaff, W.J., Saito, Y., Nanishi, Y.: Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80, 3967 (2002).
7.Matsuoka, T., Okamoto, H., Nakao, M., Harima, H., Kurimoto, E.: Optical band gap energy of wurtzite InN. Appl. Phys. Lett. 81, 1246 (2002).
8.Wu, J., Walukiewicz, W., Yu, K.M., III, J.W. Auger, Haller, E.E., Lu, H., Schaff, W.J.: Small band gap bowing in In1−xGaxN alloys. Appl. Phys. Lett. 80, 4741 (2002).
9.Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S., Ikeda, M.: Characterization of threading dislocations in GaN epitaxial layers. Appl. Phys. Lett. 76, 3421 (2000).
10.Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., Chocho, K.: InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl. Phys. Lett. 72, 211 (1998).
11.Kozodoy, P., Ibbetson, J.P., Marchand, H., Fini, P.T., Keller, S., Speck, J.S., DenBaars, S.P., Mishra, U.K.: Electrical characterization of GaN p-n junctions with and without threading dislocations. Appl. Phys. Lett. 73, 975 (1998).
12.Hellman, E.S.: The polarity of GaN: A critical review. MRS Internet J. Nitride Semicond. Res. 3, 11 (1998).
13.Seelmann-Eggebert, M., Weher, J.L., Obloh, H., Zimmermann, H., Rar, A., Porowski, S.: Polarity of (00.1) GaN epilayers grown on a (00.1) sapphire. Appl. Phys. Lett. 71, 2635 (1997).
14.Daudin, B., Rouvière, J.L., Arlery, M.: Polarity determination of GaN films by ion channeling and convergent beam electron diffraction. Appl. Phys. Lett. 69, 2480 (1996).
15.Ponce, F.A., Bour, D.P.: Determination of lattice polarity for growth of GaN bulk single crystals and epitaxial layers. Appl. Phys. Lett. 69, 337 (1996).
16.Qian, W., Skowronski, M., De Graef, M., Doverspike, K., Rowland, L.B., Gaskill, D.K.: Microstructural characterization of α–GaN films grown on sapphire by organometallic vapor phase epitaxy. Appl. Phys. Lett. 66, 1252 (1995).
17.Ning, X.J., Chien, F.R., Pirouz, P., Yang, J.W., Khan, M. Asif: Growth defects in GaN films on sapphire: The probable origin of threading dislocations. J. Mater. Res. 11, 580 (1996).
18.Narayanan, V., Lorenz, K., Kim, W., Mahajan, S.: Origins of threading dislocations in GaN epitaxial layers grown on sapphire by metalorganic chemical vapor deposition. Appl. Phys. Lett. 78, 1544 (2001).
19.Lu, C.J., Bendersky, L.A., Lu, H., Schaff, W.J.: Threading dislocations in epitaxial InN thin films grown on 0001 sapphire with a GaN buffer layer. Appl. Phys. Lett. 83, 2817 (2003).
20.Araki, T., Ueta, S., Mizuo, K., Yamaguchi, T., Saito, Y., Nanishi, Y.: TEM characterization of InN films grown by RF-MBE. Phys. Status Solidi (c) 0(7), 2798 (2003).
21.Jasinski, J., Liliental-Weber, Z., Lu, H., Schaff, W.J.: V-shaped inversion domains in InN grown on c-plane sapphire. Appl. Phys. Lett. 85, 233 (2004).
22.Lu, H., Schaff, W.J., Hwang, J., Wu, H., Yeo, W., Pharkya, A., Eastman, L.F.: Improvement on epitaxial grown of InN by migration enhanced epitaxy. Appl. Phys. Lett. 77, 2548 (2000).
23.Ruterana, P., Nouet, G.: Atomic structure of extended defects in wurtzite GaN epitaxial layers. Phys. Status Solidi 227, 177 (2001).
24.Onozu, T., Gunji, I., Miura, R., Ammal, S.S.C., Kubo, M., Teraishi, K., Miyamoto, A., Iyechika, Y., Maeda, T.: Computational studies on GaN surface polarity and InN/GaN heterostructures by density-functional theory and molecular dynamics. Jpn. J. Appl. Phys. Part 1 38, 2544 (1999).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed